中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

  • 5388查看
  • 2回复

柴油机气缸盖罩成形模具的设计与分析

[复制链接]


该用户从未签到

发表于 25-5-2009 14:05:04 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


(1. 扬州大学  机械工程学院,江苏  扬州  225009)
        (2. 扬州柴油机有限责任公司,江苏  扬州 225009)
摘要:为了降低柴油机气缸盖罩的成本,使用板件替代原先的铸铝件。文中分析了柴油机气缸盖罩的结构和使用要求,对其进行板件成形工艺分析与冲压模具结构设计,采用计算机仿真技术模拟其成形过程,并根据模拟计算结果,改变坯料尺寸及形状、压边力和凸凹模圆角半径等工艺参数,实现工艺方案与工艺参数的优化设计;并重点介绍拉深成形模具的设计。
关键词:气缸盖罩;计算机仿真;工艺方案;优化;模具
                                      
Design and Analysis of the Shaping Mould
for Diesel Engine Cylinder Head Cover
Chen ting 1, Song aiping1 , Wang zhaolei1 , Jin hongyan2

1. College of Mechanical Engineering, Yangzhou Univ. , Yangzhou 225009, china
2. Yangzhou Diesel Engine Co. LTD, Yangzhou 225009, china

Abstract: Technical analysis and structure designs was put forword according to the structure and usage of the diesel engine cylinder head cover. Using the computer simulation technology to simulate its forming process is analyzed in the paper. According to the results of numerical simulation, craft parameter ,such as the dimensions and shape of the blank, blank-holder force or round radius of the punch-die are modified for the purpose of optimizing the craft plan and the craft parameter. Especially, the draw mould is illustrated in detail.
Keywords: cylinder head cover; computer simulation; craft plan;optimize;mould
O 引言
       
        柴油机的气缸盖罩位于整个发动机的最上端,图1为气缸盖罩拉深成形零件的实体图。其不仅要求其达到设计性能和可靠性要求,同时还要求外形美观、成本低。该零件的冲压过程包括拉深成形、整形、冲孔、切边、翻边。板料成形的计算机仿真分析采用弹塑性有限元方法计算成形件的应力应变分布,通过对模拟坯料的变形过程预测其成形缺陷,及时提出模具设计及工艺设计的修改方案,避免了传统试模中更改工艺方案与工艺参数的盲。图2为板料冲压成形的仿真分析流程,根据板料成形模拟分析预先发现成形缺陷,指导工艺方案的改进或板件外形的修改。

      图1  气缸盖罩模型与实物
       
        图2  板料冲压成形仿真分析流程
模拟分析和工艺分析
        1.1模拟分析
        气缸盖罩成形件是非对称的盒形零件,其图形如图3所示。在螺孔周围有很多凹凸圆弧形的加强筋,整个气缸盖罩形状显得较为复杂。
        该零件首先使用Solidworks软件,进行零件的三维曲面造型,数据以IGES文件格式传递到板料成形数值模拟软件Dynaform中划分网格建立仿真模型进行仿真分析,根据模拟结果,通过调整压边力,坯料尺寸来寻求最佳拉深成形工艺参数,并满足零件的起皱、拉裂要求。该模型由板料毛坯、压边圈及凸模来表达模型。Dynaform中的分析模型如图4所示。

        图3   零件简图
       
        图4   有限元网格模型
       
1.2工艺分析
        汽缸盖罩长为537.5mm,宽为132.5mm, 拉深高度为80mm左右。顶面为一角度为12°的斜面,四个Φ20螺栓孔和一个加油口都是位于平行于底面的平面上,螺栓孔有高为1.5mm~2mm的向内翻边,底面周边有高为6mm的向上翻边。该板料采用厚度为1.5mm的上海宝钢ST14拉深板.
        采用先在剪扳机上下料,再在拉深模上拉深成形,然后进行下面的工序。采用上述做法的主要原因是考虑毛坯形状的影响以及材料需要压边,首先当采用矩形毛坯进行仿真时,成形后在角部有大量的多余材料堆积,使四个角处的金属流动发生困难,对毛坯形状进行修改得到如图5所示坯料,变化后毛坯变形材料的流动状况得到改善,变形均匀性提高。
       
        图5  坯料轮廓示意图
        该零件在初拉深成形时容易起皱,为了防止在拉深过程中发生起皱,为下道工序做准备,在加工中使用压边圈来防止起皱,压边力的大小必须适当,压边力过小,则不能防止起皱;过大,则增加了拉深力,甚至会引起工件拉裂。实际压边力的大小要根据既不起皱也不被拉裂这个原则,在试模中加以调整。
        压边力的计算公式:  Q=Fq
其中: F--在压边圈下的毛坯投影面积(mm2),q--单位压边力(MPa)
根据经验取q=2.5~3.0 MPa,由于该零件的面积比较大,适用较小的单边力,取q=2.5 MPa,得出压边力为210KN。
        采用Dynaform软件进行模拟分析,无需实际试模,在虚拟环境下实施压边力的调整。
        由于顶面有一角度为12°的斜面,整个零件呈非对称分布,拉深的高度为80mm左右,底部圆角部位B区域如图6所示和顶部圆角过度处A区域如图6所示,在拉深成形中易出现问题。通过改变凸模圆角半径和凹模圆角半径可以避免A区域可能出现的过度拉伸和B区域出现的起皱现象。
       
        图6  拐角局部视图
        凹模圆角半径的取值是否合适是拉深能否成功的关键因素之一,取值过大,则有效压边面积减小,板料悬空面积增大,会造成板料受压失稳而出现内皱等缺陷,取值过小,则弯曲阻力过大,导致拉应力过大,可能使圆角内壁处出现拉破,缩颈等现象,模拟计算表明,在压边力控制下,要保证坯料拉深成功,的数值不能大于7.5mm,否则会出现内皱现象,为提高成形质量并考虑到拉深后整形的便利,将值取为7mm.
        通过板料成形模拟分析,在零件侧壁处与凸模圆角相接处板料变薄最为严重,是拉深时最容易破裂的断面,原因是由于圆角处的材料受二方向的拉应力,并且该处的拉应力较大,初拉深时若将其一次拉深成形,凸模圆角半径过小,会引起该处板料过度拉伸,可能会出现断裂。因此初拉深时不可一次成形,将顶部圆角半径增大,再调节压边力,则可以避免拉裂。压边力为210KN,为20mm时,模拟结果如图7和图8所示,底部圆角部位以及圆角内壁处发生破裂。
       
        图7 成形极限图

        图8  拉深模拟状态
        压边力为150KN,为25mm时,模拟结果如图8和9所示,发生破裂。
       
        图9  成形极限图

        图10  拉深模拟状态
        压边力为100KN,为29mm时,由模拟结果如图11和12所示,消除了破裂。
       
        图11 成形极限图
       
            图12  拉深模拟状态
        最终决定采用以下工序完成该零件的加工:
拉深成形:使板材在压力机和模具的作用下初步形成总体轮廓。
整形:使初步成形的轮廓进一步成形,使制件外表形状凸凹彰显,去除拉深圆角,为下道工序和翻边工序作准备。
切边(底边)、冲孔(四个螺孔和一个加油口)复合:去除拉深件的周边余料,加工出底孔和加油口底孔。
翻边(四个螺孔):将冲出的螺栓底孔进行翻边动作,以增加孔口的强度
翻边(底边):将底边上翻,形成圆弧形截面。
2 模具设计
        本文重点讲述拉深成形模具的设计。凸模与凹模的内侧间隙为δ=1.7~1.8mm,略大于板料厚度0.2~0.3mm。拉深和整型的凸、凹模是成形的工作部件。且凸、模形状比较复杂、精度要求高,同时要具有足够的强度,凸、凹模必须有很好的耐磨性和滑动性能,选用QT500-7作为凸、凹模的材料;压料板也选用QT500-7材料;其余件选用HT200和45钢材料。
        该结构用于双动液压机,模具采用倒装结构。上模下行时,由压料板将毛坯压住,凸凹模进行拉深,压料板在下液压缸的作用下紧紧压住毛坯,防止板料起皱。上模回程时,将制件脱出凸模,完成一个动作循环。图13为拉深成形模具结构示意图。

        图13  拉深成形模具
  1.模柄 2.上模座 3.导套 4.导杆               5.压料板 6.下模座 7.凸模固定板 8.顶板 9.凸模 10.下推杆 11.凹模 12.推杆
结束语
        对汽缸盖进行工艺分析计算之后,再利用计算机仿真加以验证、预测,指导模具设计,避免了传统的试模中更改工艺参数的盲目性,提高了试模的成功率,缩短模具开发周期,降低开发成本。加工盒形零件尽量避免采用矩形坯料,改善成形件角部材料堆积以及材料的流动状况,提高材料的变形均匀性。 该模具实际使用效果良好,冲压成形件如图1所示,该板件可以替代原先铸铝件使用,并且大幅度的降低气缸盖罩的制造成本。

主要参考文献:
[1]谭 晶,孙 胜等. 基于计算机仿真分析的拉深工艺参数优化. 锻压技术,2003.1:29-31
[2]王晓路,陈 炜,高 霖等. 数值模拟对薄板冲压成形工艺设计的优化.锻压技术,2005.3:21-25
[3]翁其金,徐新成编著.《冲压工艺与冲模设计》.机械工业出版社,2004



作者简介:
(1)陈婷,1983出生,女,扬州大学机械工程学院在读研究生。
(2)宋爱平,1965出生,男,扬州大学机械工程学院副教授,硕士导师。
(3)王召垒,1983出生,男,扬州大学机械工程学院在读研究生。
(4)金鸿雁,1971出生,男,扬州柴油机有限责任公司,工程师。





E-mail: chenting_aa@sina.com   邮编: 225009  
        通讯地址:江苏省扬州大学 机械工程学院
        机械研05级  陈婷
电话: 13225140680,0514-7992802


该用户从未签到

 楼主| 发表于 25-5-2009 14:06:26 | 显示全部楼层

Automatic concept model generation for

Advances in Engineering Software Article in Press, Corrected Proof
Automatic concept model generation for optimization and robust design of passenger cars
J. Hilmanna,, M. Paasb, A. Haenschkeb and T. VietoraFord Werke GmbH – Cologne, Pre Program and Concept Engineering, ML/PPC1, D-50725 Cologne, GermanybFord Werke GmbH – Cologne, Body Core Engineering – Safety, ME2/J2, D-50725 Cologne, Germany Received 23 June 2005;  accepted 14 August 2006.  Available online 31 January 2007. Abstract
A fully automated method of structural optimization for the body in white structure is presented. The body in white is a technical term for the car body without windows and closures. The iterations in the optimization loop comprise the following steps: fully parameterized design creation, automated meshing and model assembly, parallel computation and evaluation. For this purpose several free and commercially available software applications were combined, including: SFE concept, Hyper mesh, Perl, Matlab, and Radioss. The optimisation was conducted using Genetic Algorithms (GA), which are ideally suited to solve problems with solution spaces that are too large to be exhaustively searched. The viability of the method is demonstrated for a vehicle component model of a front bumper system utilizing both material and geometry related properties as design variables.
Keywords: Vehicle engineering; Structural optimisation; SFE concept; Genetic algorithms; Finite element method; Parametric modelling; Sensitivity analysis Article Outline
1. Introduction
2. Tools and methods
2.1. Finite element model generation
2.2. Simulation processing
2.3. Evaluation
2.4. Genetic algorithms

3. Structural optimisation of demonstrator model
3.1. Fitness function
3.2. Sensitivity analysis
3.3. Optimisation results
4. Discussion and conclusions
References
1. Introduction
Passenger car development is a multi-disciplinary task. The vehicle has to fulfil demands out of different attributes like safety, dynamics, statics, NVH (Noise, Vibration, and Harshness). For these attributes various numerical tools are established. The importance of these tools is continuously increasing due to shortening of product cycle times and competitive pressure. Because of the massive reduction of physical prototypes the development process is guided by numerical methods. A huge amount of work and time for model generation is required. Furthermore, the attributes are highly sensitive against variation of design parameters, like material grades, material gauges, assembly processes and spot weld properties.
Research efforts in the field of vehicle engineering are focussing on proper deployment of numerical optimization techniques, involving parameter, shape and topology optimisation [1], [2], [3], [4] and [5]. Here finite element models are adopted for generating modified meshes based on scaling and/or morphing algorithms. Stochastic simulation in combination with non-linear optimisation to support vehicle design process is addressed in [1], [2] and [3].
For the next years the optimisation tasks will be extended to the following activities: shape and topology optimisation with arbitrary geometrical adaptations, and multi-disciplinary optimisation (for different vehicle attributes [1], [2], [3] and [4]).
Topology optimisation, which is based on capturing the design space in volume elements, may produce infeasible solutions for sheet metal parts as used in typical body in white structures.
In [6] the idea to combine parametric SFE/Concept models with optimisation tools was discussed as prospect for future work.
In this paper a method for automated model generation is discussed, which allows for effective model generation in automotive engineering applications. In conjunction with model generation an optimisation procedure is adopted, which is capable of structural optimisation, involving both material and geometry related properties. In addition, the system is capable of conducting robustness and sensitivity analyses.
Key in the above mentioned approach is the automated creation of complex finite element models based on a parametric design as provided by the batch mode of SFE concept [7], which is prerequisite for the extension to multi-disciplinary optimisation of full scale vehicle models [11] and [12]. The optimisation process is based on genetic algorithms, which apply the principle of survival of the fittest to produce optimal solutions to problems.
In Chapter 2 of this paper, the toolset and methods for model creation, assembly, computation, evaluation and optimization are discussed. A finite element model of a bumper/crash box/side rail system is presented. In Chapter 3, plastic side rail deformation of this system is minimized. Finally, in Chapter 4 conclusions are drawn and future work is discussed.
2. Tools and methods
Pre-requisite for a structural shape and topology optimisation is the ability to automatically generate calculation models based on various designs. A schematic process chain is shown in Fig. 1. The left hand side statements in Fig. 1 list the subsequent tasks for each generation (iteration), the right hand side displays the process flow. In the optimisation process several free and commercially available software products are utilized. Major component in the simulation loop is SFE concept which is a parametric tool supporting fast geometry modelling for body in whites combined with a powerful auto meshing functionality [7].
(44K)
Fig. 1. Process flow of structural optimisation method.
The result is a high-quality finite element mesh as shown in Fig. 2. Flange and connectivity information as spot welds are included as well. In order to assess safety attribute performance, it is required to add boundary and initial conditions, contacts, and material properties. Although the process chain presented is focussing on safety, it can be rephrased to other applications.
Fig. 2. SFE concept model (left) and automatically generated mesh (right).
(29K)
2.1. Finite element model generation
In order to demonstrate the viability of the process flow and to limit simulation times a component model was created as demonstrator. The model comprises two crash cans, the bumper beam and parts of the side rails, as shown in Fig. 3. The side rails are split behind the engine mounts and are part of the original finite element base model; the bumper beam and the crash boxes are part of the SFE concept geometrical model. The overall masses and moments of inertia of the vehicle are represented by a rigid body formulation. The optimisation task is limited to the bumper/crash box sub system. Fig. 4 shows design variables of the bumper beam/crash box system. The design vector includes: material gauge and grade, cross-section dimensions geometrical dimensions as trigger or closing plate positions. In the SFE concept model creation process it is important to comply with package limitations as ramp angles or opening areas for the cooling pack. As mentioned previously, the bumper beam/crash box parts of the optimisation example are totally parametric geometry created with the SFE concept design tool.
(27K)
Fig. 3. Finite element model for optimization, side rails, crash boxes and bumper beam.
(52K)
Fig. 4. Design variables of bumper beam/crash box example.
The geometry is updated for each member of the optimisation generation and is translated to new finite element meshes for the bumper/crash can system. Then, the new finite element meshes are combined with the existing side rail elements to form new designs for all optimisation loops.
2.2. Simulation processing
The simulations are distributed to multiple workstations. This parallel calculation method uses one workstation as master for the model preparation and control functions. On a set of workstations a program called “worker” is started. That worker looks up whether the master initiated a task in a queued folder, which will then be marked as running and the worker starts to calculate the model. If finished the task is put into a finished folder. This approach is very suited for combination with genetic algorithm optimization, which will be discussed in Section 2.4. It basically enables us to reduce the calculation time for one generation (iteration) to the calculation time of one member. Thus is reducing the turn around times dramatically. After having calculated all members, the master starts the evaluation of all members and the optimisation interface is tasked. A brief overview of the pros and cons of the computing alternatives is given in Table 1. It is noted that the assessment is based on the company specific infrastructure.
Table 1.
Comparison of calculation alternatives
Parallel/sequential process        Sequential single workstation
        Multi-workstation        Sequential
        Multi-workstation
        Dedicated Linux cluster
        Cray super-computers
       
Parallel/non-parallel computing        Non-parallel        Non-parallel        Parallel        Parallel        Parallel        Parallel       
Calculation time        Hours/generation 8 member/generation        15        2        7        1        1 if no jam        1 if no jam       
Process robustness        +++        ++        O        −        +++        +++       
                                                               
Demand for workstations        Process        1                1        1        1        1       
        Total                8        3        24                       
        For calculation                1 workstation per calculation        3 workstations per calculation        8*(3 workstations per calculation)        12*(6 CPUs per calculation)        12*(6 CPUs per calculation)       
                                                               
Implementation                Done        Done        Tested but not preferred        Not implemented not planned        Implemented for large models        Tested but not preferred       
Cost for CPU time        +        +        +        +        O        −       
Comment        Positive        Very robust easy implementation no costs        Good robustness good calculation power no costs        Better calculation power no costs        Good calculation power no costs        Highest performance Robust process        High performance Robust process
       
        Negative        Low calculation power        Calculation power limited to component models        Non dedicated cluster not robust enough        Huge amount of WS required        Hardware cost are calculated based on used CPU time        CPU time expensive       

2.3. Evaluation
The evaluation of crash results is realized with Ford standard software Envision and TH++, both applications support macro scripts for automated model evaluation.
So far, only plastic strains in side rails, resistant wall forces and bumper system weight are stored (in ASCII format). The evaluation tools can be customized and additional outputs can be extracted for improved system knowledge.
2.4. Genetic algorithms
Genetic algorithms (GA) are stochastic iterative search methods that mimic natural biological evolution [13] and [14]. GAs have been applied successfully to numerous problems from different domains, including optimisation, machine learning, operations research, social systems etc. GAs operate on a population of potential solutions applying the principle of survival of the fittest to obtain best solutions. For each generation, its members representing feasible solutions in the search space, are encoded and evaluated according to some predefined quality criterion, referred to as fitness. Genetic algorithms are capable of solving difficult problems with objective functions that do not possess continuity and differentiability. GAs work in many situations because solutions with above-average fitness receive exponentially increasing trials in subsequent generations. The population members or chromosomes should contain information about the solution that is represented. A number of coding schemes exist, such as binary coding and real value coding. In what follows the real value coded GAs have been adopted, since these generally converge more rapidly and are more efficient, because there is no need for encoding and decoding.
The basic GA algorithm is outlined below:
(1) [Start] Generate initial population of random chromosomes (population members) representing suitable solutions to the problem.
(2) [Fitness] Evaluate the fitness f(x) of each chromosome (member) x in the population.
(3) [New population] Generate a new population based on the following steps:
(a) [Selection] With probabilities proportional to their fitness, parent chromosomes of the population are selected.
(b) [Crossover] Based on crossover probability parents exchange genetic material (bits in chromosomes). This produces two new chromosomes, called offspring or children, which replace the parents.
(c) [Mutation] Randomly chosen bits in the offspring chromosomes are flipped based on mutation probability.
(d) [Accepting] Place new offspring in the new population.
(4) [Replace] Use new population for next step.
(5) [Test] The algorithm repeats for some specified number of additional generations or until a convergence criterion is reached, such as no significant further increase in the average population fitness. If the termination condition is satisfied, stop, and return the best solution in current population.
(6) [Loop] Go to step 2.
Key parameters of GA involve crossover probability, mutation probability, and population size.
Crossover probability denotes how often crossover will be performed. If crossover probability is 100%, then all offspring are made by crossover. If it is 0%, a next generation is made from exact copies of chromosomes from the old population. Typically, crossover probability should be high (larger than 50%).
Mutation probability: denotes how often parts of chromosomes will be mutated. If mutation probability is 100%, the whole chromosome is changed, if it is 0%, nothing is changed. Mutation generally prevents the GA from falling into local extremes. Mutation rate should be low generally (typically less than 5%).
Population size: denotes how many chromosomes are in population. If there are too few chromosomes, GAs have few possibilities to perform crossover and only a small part of search space is explored. On the other hand, if there are too many chromosomes, GA slows down. In the current example the population size was set to eight members.
Advantages of using GAs
• Ideally suited for problems with solution spaces that are too large to be extensively searched.
• No limitations regarding continuity or differentiability of design variables: discrete variables, such as sheet metal thickness, can be introduced flawlessly.
• GAs tend to explore a wider variety of potential solutions, which can lead to solutions that would otherwise not be considered.
• Easy to implement.
• Unlike gradient methods capable of dealing with large set of design variables.
• Ideally suited to implementation on parallel computers.
• Easy restart based on best population.
Disadvantages
• Computational efficiency can be lower than in other methods.
• GAs do not provide general system knowledge.
3. Structural optimisation of demonstrator model
Next the optimisation results of the demonstrator model are discussed.
3.1. Fitness function
Typically, the proper choice of a fitness function is not trivial. For the optimisation of the energy absorbing capacity of the bumper/crash box/side rail system impacting a rigid wall, the objective function was initially targeting at a constant force level during impact so as to maximize the energy absorption efficiency [8]. Hence, the fitness function was expressed as
       
with FT the target force vector which must be achieved by the wall force vector F.
A drawback of this approach is the underlying assumption of an a priori known optimal force level. In a second step plastic strains of side rails were minimised in order to limit repair and insurance costs in low speed impacts. The associated fitness function was defined as
       
with the maximum plastic strain in the side rails and K a suitable scaling factor, whose value was selected as 20. The fitness function expresses that the maximum plastic strain in the side rails may not exceed a threshold level of 0.015 in order to avoid visible residual deformations. The best fitness values were normalized to enables comparison with potential additional fitness criteria.
3.2. Sensitivity analysis
GA provide no detailed information on the system characteristics. In order to gain some a priori system knowledge on the effects of the design parameters on the fitness function, Monte Carlo simulations (100 runs) were conducted.
All design parameters were varied under the assumption of uniform statistical distributions. Fig. 5 shows the sensitivity of the design variables in terms of linear correlation coefficients. It can be easily seen that parameters 5 and 7, referring to crash can inner and outer panel thicknesses, have the biggest influence on the fitness function. Also, it can be observed that parameters 0–4 and parameters 8 and 10 exhibit only a small linear correlation with fitness. Based on these results one could decide to either omit these parameters from the optimisation or to adjust the associated interval sizes. Next, adaptive fuzzy logic modelling was adopted to establish the relationship between design variables and fitness. Using a given input/output data set the Matlab toolbox function ANFIS (Adaptive Neuro Fuzzy Inference System) was utilised to construct a fuzzy inference system whose membership function parameters were tuned to optimally represent the system’s behaviour. ANFIS models are multi-input single-output models, the inputs being the design variables and the output being the fitness. A major advantage of ANFIS modeling over other methods is, that no a priori model knowledge is required. To select the best ANFIS model the design variables that have the strongest influence on the fitness are determined by checking the root mean square errors for all permutations of the design variables. (35K)
Fig. 5. Sensitivity chart for the design variables.
Given the number of runs that have been performed, a maximum of two selected design variables is most convenient. The design variables yielding the best ANFIS model are par5 and par7. This result is consistent with the linear correlation coefficients results depicted in Fig. 5.
Fig. 6 shows the associated response surface, which gives a three-dimensional representation of the relationship between two design variables and the normalised fitness. It can be seen that the best fitness values are obtained on the plateau with par5 values in the vicinity of 1.7 and par7 values in the vicinity of 1.4. Also, it can be observed that the plateau warrants robustness with respect to perturbations of the design variables. (44K)
Fig. 6. Response surface fitness function versus two design variables. 3.3. Optimisation results
The mean population fitness versus the number of generations is shown in Fig. 7. It is remarked that the termination condition was fulfilled after 20 generations (Schwarz inequality).
(25K)
Fig. 7. Mean fitness of bumper systems versus generation. In Fig. 8 a sample of four different designs is shown at 60ms simulation time. In the initial generation mainly bending modes of the crash box can be observed. The crash can consist of two parts where both material thicknesses and material grades are included in the design vector. (91K)
Fig. 8. Sample of four population members after 60 ms for generation 1 (left) and generation 16 (right). In the initial population inner and outer crash can parts were selected with different panel thicknesses. This initiated a bending mode in the crash can and side rail. By varying material thickness, material grade and shape of the crash can and its crash initiators (triggers) an axial bending mode of the crash box was found to have a high fitness. Then, a dramatic reduction of the plastic deformation of the side rails was obtained. The best design solutions withstood the impact without visible damage after 20 generations. Since the design target of minimal plastic strain in the side rails had been achieved, the structural optimisation was terminated after 20 generations.
The optimisation resulted in a significant weight reduction of 30%, it is noted that this was not the dominating design objective.
4. Discussion and conclusions
The viability of a structural optimisation process was demonstrated. The importance of achieving optimal system performance in conjunction with robustness was emphasised. System noise due to statistical variations in the design parameters was addressed. Combined application of optimisation methods and sensitivity analysis based on Monte Carlo simulations enables optimal numerical efficiency by reducing total number of design variables and selecting initial population of fit members. Genetic Algorithms offer distinct benefits like: problem solving for large solution spaces, no limitations on maximum number of design variables, avoidance of premature convergence to local optima, no limitations on continuity or differentiability and numerical efficiency through parallel computing.
SFE concept delivers high quality meshes based on parameterised models thus providing high flexibility for investigating design alternatives.
Parallel computing gives the opportunity to extend the size of the models and to include additional components like the engine.
It is noted that the application of evolution strategies based on deterministic selection and self-adaptation of strategy parameters may result in less function evaluations and hence improved computational efficiency. This will be topic of future research. In addition, future work is targeting at the application of the optimisation process to large component models and to multi-disciplinary optimisation involving adjacent attributes, such as stiffness analyses.

References
[1] Streilein T, Hillmann J. Stochastische Simulation und Optimierung am Beispiel VW Phaeton. VDI-Bericht Nr. 1701, 2002.
[2] Höfer C, Sakaryali C. Method for Automated Geometry Modification in Stochastic Analyses. In: 4th European LS-DYNA Conference, May 2003, Ulm, Germany.
[3] Will J, Bucher C, Riedel J, Akguen T. Stochastik und Optimierung: Anwendung genetischer und stochastischer Verfahren zur multidisziplinären Optimierung in der Fahrzeugentwicklung. VDI-Bericht Nr. 1701, 2002.
[4] Meyerwerk M. Optimierung in der Fahrzeugindustrie, Methoden und Anwendungen. VDI-Bericht 1701, 2002.
[5] C. Reed, Applications of Optistruct Optimisation to Body in White Design, Altair Engineering Ltd, Jaguar (2002).
[6] Hilmann J, Hänschke, A. Use of simplified models for the improved vehicle lay out with regards the vehicle Safety 10. Aachen Colloquium: Automobile and Engine Technology; 2001.
[7] Zimmer H, Hövelmann A, Schmidt H, Umlauf U, Frodl B, Hänle U. Entwurfstool zur Generierung parametrischer, virtueller Prototypen im Fahrzeugbau. VDI-Bericht Nr. 1559, 2000.
[8] Paas M, Ippen H, Schilling R. Structural Component Optimisation and Material Model Identification based on Generic Algorithms. VDI-11. Internationaler Kongreß Numerical analysis and simulation in Vehicle engineering, 01.–02. Oktober 2rzburg.
回复 支持 反对

使用道具 举报



该用户从未签到

 楼主| 发表于 25-5-2009 14:07:25 | 显示全部楼层

客车优化和健壮设计的概念模型自动生成世代

福特汽车有限公司-科隆,预计划和工程概念, ML/PPC1和D - 50725 Cologne ,德国bFord有限公司-科隆,机构的核心工程-安全, ME2/J2和D - 50725 Cologne ,德国收到2005年6月23 ;接受2006年8月14日。网上提供2007年1月31日。
摘要
一种完全自动化结构优化的白车身结构的方法。白车身白车身是车身没有窗户和闭合的一个技术术语。 The iterations in the optimisation loop comprise the following steps: fully parameterised design creation, automated meshing and model assembly, parallel computation and evaluation.在反复循环的优化包括以下步骤:充分参数化设计制作,自动啮合和模型装配,并行计算和评估。 For this purpose several free and commercially available software applications were combined, including: SFE concept, Hypermesh, Perl, Matlab, and Radioss.为此,有一些免费的和商业化应用软件相结合,其中包括:模拟飞行环境试验的概念, 虚拟网 , Perl,Matlab和Radioss 。 The optimisation was conducted using Genetic Algorithms (GA), which are ideally suited to solve problems with solution spaces that are too large to be exhaustively searched.优化使用的是遗传算法( GA ) ,理想地说适合解决解决方案空间的问题是太大以至于不能详尽地被搜寻。证明该方法是一个组件模型车的前保险杠系统利用物质和几何有关的性能设计变量。
关键词:车辆工程;结构优化; 超临界流体萃取的概念;遗传算法;有限元法;参数化建模;敏感性分析
文章概要
1. Introduction 1 。 导言
2. Tools and methods 2 。 工具和方法
2.1. Finite element model generation 2.1 。 有限元模型生成
2.2. Simulation processing 2.2 。 仿真加工
2.3. Evaluation 2.3 。 评价
2.4. Genetic algorithms 2.4 。 遗传算法
3. Structural optimisation of demonstrator model 3 。 结构优化演示模型
3.1. Fitness function 3.1 。 健身功能
3.2. Sensitivity analysis 3.2 。 敏感度分析
3.3. Optimisation results 3.3 。 优化结果
4. Discussion and conclusions 4 。 讨论和结论
References 参考资料






1 。 导言
客车发展是一项多重学科的任务。 车必须履行不同的要求在例如安全,动力学,静力学, NVH (噪声、振动和酸辣)的不同的属性外面。 对于这些属性用各种各样的数字工具建立。 这些工具的重要性是由于缩减循环时间和竞争压力连续地增加。 由于物理原型的巨型的减少发展过程是用数字方法引导的。 大量的模型世代的工作和时间是必需的。 此外,属性是高灵敏反对设计参数的变异,象材料等级、材料测量仪、装配作业和点焊工具。
车辆工程研究领域的重点放在正确部署数值优化技术,包括参数,形状和结构优化[ 1 ] [ 2 ] [ 3 ] [ 4 ]和[ 5 ] 。这里的有限元模型,通过修改网格生成的基础上扩大和/或变形的算法。随机模拟,结合非线性优化,以支持汽车设计过程中处理[ 1 ] [ 2 ]和[ 3 ]
在接下来的几年里,最优化的任务将扩大到下列活动:形状和拓扑优化任意几何调整,和多学科优化(针对不同的车辆属性[ 1 ] [ 2 ] [ 3 ] [ 4 ] )
拓扑结构优化的基础上,捕捉空间的设计要素,以数量计,可能会产生不可行解的钣金零件中所用的典型的白车身结构
在[ 6 ]的想法结合起来超临界流体萃取概念模型与优化工具,论述了今后的工作前景。
本文的方法自动生成模型的讨论,从而能够有效的模型生成汽车工程应用。结合模型生成一个优化的程序通过,这是能力结构优化,涉及相关的材料和几何特性。此外,该系统能够进行强度检测和敏感性分析。
关键在上述做法是自动创建复杂的有限元模型为基础的参数化设计所提供的批处理模式的超临界流体萃取概念[ 7 ] ,这是先决条件扩大到多学科优化的全面车型[ 11 ]和[ 12 ] 。优化过程是基于遗传算法,适用的原则,优胜劣汰产生最佳的解决问题。
在第2章介绍了工具和方法,模型制作,组装,计算,评价和优化进行了讨论。有限元模型的一个保险杠/黑匣子/侧铁路系统。在第3章,塑料方铁路变形的这个系统是减少到最低限度。最后,在第4章结论和未来的工作进行了讨论。
2 。工具和方法
先决条件,形状和结构拓扑优化是能够自动生成计算模型为基础的各种设计。过程链示意图显示图。 1 。左手边报表图。 1名单随后任务每一代(迭代) ,右边显示的工艺流程。在优化过程中有一些免费的和商业软件产品的使用。中的主要组成部分是超临界流体萃取模拟环路的概念,是一个参数的工具支持快速几何建模机构白人结合了强大的自动啮合功能[ 7 ]
(44K)
图。 1 。流程的结构优化方法。
其结果是一个高质量的有限元网格图所示。 2 。法兰和连接信息作为现场焊接列为良好。为了评估安全属性的性能,它是需要购买的边界和初始条件,联系人和材料特性。虽然这一进程链提出是侧重于安全性,它可以修改其他应用程序。
图。 2 。超临界流体萃取的概念模型(左)和自动生成的网格(右) 。
(29K)
2.1 。有限元模型生成
为了证明流程可行性和限制时间,创建一个组成部分仿真模型来演示。该模型包括两个崩溃罐,缓冲器束和部分铁轨一侧所示,图。 3 。铁轨一侧分裂背后的发动机支架和部分原始有限元基准模型;保险杠梁和崩溃方块的一部分,超临界流体萃取的概念几何模型。总的多数和转动惯量的汽车是由刚体制定。优化的任务是有限的保险杠/飞机失事中分制度。图。 4显示设计变量的保险杠束/盒系统崩溃。设计载体包括:材料评估和分级,截面几何尺寸尺寸为触发或关闭板的位置。超临界流体萃取中的概念模型的创建过程,重要的是遵守一揽子限制坡道角度或开放地区的冷却包。如前所述,保险杠梁/飞机失事中部分优化的例子是完全建立几何参数的超临界流体萃取的概念设计工具
(27K)
图。 3 。有限元模型的优化,侧轨,事故箱和保险杠梁。
(52K)
图。 4 。设计变量的保险杠梁/飞机失事中的例子
几何形状的更新为每个成员的优化生成和转化为新的有限元网格的保险杠/飞机失事可以系统。然后,新的有限元网格相结合,与现有的一方铁路要素,形成新的设计为所有优化循环
2.2 。模拟处理
仿真分配给多台工作站。这种并行计算方法使用一个工作站主模型编制和控制功能。一套工作站一个名为“工人”已启动。那个工人查找是否主发起了一项任务,一个队列中的文件夹,然后将被标记为运行和工人开始计算模型。如果完成了任务是放到一个完成的文件夹中。这种做法是非常适合结合遗传算法优化,这将是第2.4节中讨论。这基本上使我们能够减少计算时间的一代人(迭代)的计算时间的一名成员。因此减少了扭转次显着。之后,计算所有成员,主机启动评价的所有成员和优化界面的任务。简要概述了优点和缺点的计算替代品是见表1 。据指出,评估是根据公司具体的基础设施。
表1 。 比较计算的替代品

并行/渐进过程
        顺序单一工作站
        多工作站
        序贯
        多工作站
        专用Linux集群

        克雷超级计算机
       
并行/非并行计算
        非平行        非平行
        平行        平行        平行        平行       
计算时间
        小时/代8个会员/代
        15        2        7        1        1 如果没有挤压        1如果没有挤压       
工艺稳定性
        +++        ++        O        −        +++        +++       
需求工作站
        进程
        1                1        1        1        1       
        共计
                8        3        24                       
        计算
                每计算
1工作站
        每计算
3工作站
        8 * (每计算 3工作站)
        12 * (每计算 6处理器)
        12 * (每计算 6处理器)
       
执行
                做完
        做完
        测试而不是首选        没有计划没有实施
        实施大型模型
        测试而不是首选
       
成本的CPU时间
        +        +        +        +        O        −       
评论
        正片        非常强劲易于实施任何费用
        良好的坚固性很好的计算功率任何费用
        没有更好的计算电力成本
        良好的计算功率任何费用
        最高性能的坚固进程
        最高性能的坚固进程
       
        负
        低功耗计算
        计算功率限于部分模型
        非专用集群不足以
        大量需要
        硬件成本基础上计算得出用CPU时间
        昂贵的CPU时间
       

2.3 。评价
坠毁的评价结果,实现了与福特汽车的标准软件的Envision和TH + + ,这两个应用程序支持宏脚本自动模式评价。 到目前为止,只有塑料株方轨,耐墙保险杠系统的力量和体重都储存(在ASCII格式) 。该评估工具可定制的和额外的产出可以提取的改进后的系统知识。
2.4 。遗传算法
遗传算法( GA )是随机迭代搜索的方法,模仿自然生物进化[ 13 ]和[ 14 ] 。天然气已成功地应用于许多问题从不同的领域,其中包括最优化,机器学习,业务研究,社会制度等遗传操作的人口可能的解决办法的原则优胜劣汰获得最佳的解决方案。对于每一代人,其成员代表可行的解决方案中的搜索空间,编码和评价根据一些预定义的质量标准,被称为健身。遗传算法能够解决难题的客观功能,不具有连续性和可微性。遗传算法的工作,因为在许多情况下,解决方案,高于平均水平的健身收到成倍增加审判在随后的几代人。人口的成员或染色体应包含有关的解决方案,是代表出席了会议。一些编码方案存在,如二进制编码和实值编码。在接下来的实际价值编码天然气通过,因为这些一般收敛更迅速和更有效,因为没有必要的编码和解码。
基本遗传算法概述如下:
( 1 ) [开始]产生初始种群的随机染色体(人口成员)代表合适的解决问题的办法。
( 2 ) [健身]健身评价函数f ( x )的每个染色体(会员) ×人口。
        ( 3 ) [新的人口]生成一个新的人口基于以下步骤: (a) [选择]的概率比例的健身,父母染色体的人口被选中。 ( b ) [交叉]根据交叉概率父母交换遗传物质(位在染色体) 。这产生两个新的染色体,要求子女或子女,取代以往的家长。 (c) [突变]随机选择位在翻转后代染色体变异概率的基础上。 (d) [接受]新的后代在新的人口
( 4 ) [取代]使用新的人口为下一个步骤。 ( 5 ) [测试]该算法重复一些特定数目的增加,直到后代或达到趋同标准,如无显着性进一步增加,平均人口健身。如果终止条件满足,停止,返回最好的解决办法在目前的人口。 ( 6 ) [回路]转到第2步。
关键参数的遗传算法涉及交叉概率,变异概率,和人口规模。 交叉概率通常是指如何将交叉进行。如果交叉概率为100 % ,那么所有的后代都是由交叉。如果是0 % ,下一代是由精确复制染色体从旧的人口。通常情况下,交叉概率要高(大于50 % )
变异概率:指多久部分染色体将突变。如果变异概率为100 % ,整个染色体发生变化,如果是0 % ,没有变化。突变的遗传算法通常防止落入当地走极端。突变率一般应低(通常不到5 % )
人口规模:指染色体是多少人口。如果有太少染色体,天然气有几种可能性进行交叉,只有一小部分搜索空间探索。另一方面,如果有太多的染色体,遗传算法放慢。在目前的人口规模例如设置为8名成员。
使用汽油的优点•非常适合于问题的解决办法空间太大被广泛搜查。 •没有限制,就连续性或微设计变量:离散变量,如薄板厚度,可以引入完美无缺。 •遗传倾向,探索更广泛的各种可能的解决方案,这可能会导致问题的解决,否则不予考虑。 •容易执行。 •不同梯度方法能够处理大量的设计变量。 •适合执行并行计算机。 •易于重新启动的基础上最好的人口。
缺点•计算效率可低于其他方法。 •遗传不提供一般的系统知识。 3 。结构优化的演示模型下一步的优化结果的演示模型进行了讨论。 3.1 。适应度函数通常情况下,适当选择适合度功能不是小事。为优化能量吸收能力的保险杠/飞机失事中/侧铁路系统刚性壁的影响,目标函数是最初的目标在不断的影响力水平,以便最大限度地提高了能量吸收效率[ 8 ] 。因此适合度功能,有人表示

与FT力向量的目标必须实现壁力向量楼一个缺点是这种方法的基本假设的先验已知最佳压力等级。在第二个步骤塑料株一侧栏杆被减至最低,以限制维修和保险费用在低速的影响。相关的适应度函数的定义是

最大限度的塑性应变在铁轨一侧和K一个合适的尺度因子,其值被选定为20 。适应度函数表示,最大的塑性应变在铁轨一侧不得超过某一阈值水平为0.015 ,以避免可见的残余变形。最好的适合度值正常化,以使更多的与潜在的适合度标准
3.2 。敏感性分析
大会没有提供详细的资料,该系统的特点。为了获得一些先验知识的系统的影响的设计参数的适合度功能, Monte Carlo模拟( 100分)进行。 所有的设计参数进行了不同的假设下,统一的统计分布。图。 5显示的敏感性,设计变量在线性相关系数。它可以很容易地看到,参数第5和第7 ,指的崩溃可以内外小组厚度,产生最大影响的适合度功能。此外,可以看到,参数0-4和参数第8和第10展览只有一小线性相关与适合度。基于这些结果可以决定或者忽略这些参数的优化或调整相关的间隔大小。下一步,自适应模糊逻辑模型通过建立设计变量之间的关系和适合度。使用特定的输入/输出数据集的ANFIS的MATLAB工具箱函数(自适应神经模糊推理系统)是用来建造一个模糊推理系统的隶属函数参数进行了调整,以最佳的代表制度的行为。 ANFIS的模式是多输入单输出模式,投入的设计变量和输出正在适合。一个主要优点的ANFIS模型比其他方法是,没有任何先验模型知识是必要的。选择最好的ANFIS的模型设计变量有强烈影响的适合度通过检查均方根误差为所有排列的设计变量
(35K)
图。 5 。敏感性图的设计变量
鉴于中来回跑的次数已经完成,最多两个选定的设计变量,是最方便的。设计变量收益最好的ANFIS的模型par5和par7 。这一结果是一致的线性相关系数结果描绘图。 5 。 图。 6显示了相关的反应表面,从而使三维代表之间的关系两个设计变量和正常化适合度。可以看出,最好的适合度值,得到了稳定状态与par5值附近的1.7和par7值在1.4附近。此外,可以看到,稳定状态权证方面的坚固性扰动的设计变量。
(44K)
图。 6 。响应面的适合度功能与两个设计变量
3.3 。优化结果平均人口适合度与后代的数量显示图。 7 。这是说,终止后履行的条件是20一代( Schwarz不等式) 。
(25K)
图。 7 。平均数健身的保险杠系统与一代。
图。 8抽样四种不同的设计是模拟显示在60ms时间。在最初的发电方式的主要弯曲事故中可以看出。这次事故可以分为两部分在两个材料厚度和材料的等级,包括在设计载体
(91K)
图。 8 。人口抽样的四个成员在60毫秒的发电1 (左)和代16 (右) 。
在初始种群内部和外部的崩溃可以部分选择了不同的小组厚度。这启动了一个弯模式可以和侧面碰撞铁路。通过改变材料的厚度,材料牌号和形状可以和它的坠毁事故发起者(触发器)轴向弯曲模式的崩溃中,发现具有很高的健身。然后,一个显着减少的塑性变形的铁轨一侧获得。最好的设计方案顶住不可见的损坏影响20后一代。由于设计目标是最小的塑性应变在铁轨一侧已经取得,结构优化后终止20几代。 优化导致体重显着减少30 % ,需要指出的是,这不是占主导地位的设计目标。
4 。讨论和结论 ,结构优化进程的可行性证明,必须实现最佳系统性能与坚固性的强调。系统噪声的统计,由于不同的设计参数的问题。联合应用最优化方法和灵敏度分析的基础上的蒙地卡罗模拟使最优数值效率,减少总数的设计变量,并选择合适的初始种群的成员。遗传算法一样提供不同的好处:解决问题的大型解决方案的空间,没有限制数量的上限设计变量,避免会聚局部最佳状态,没有限制的连续性或微和数值并行计算效率。 超临界流体萃取的概念提供高品质的网格模型的基础上参数化从而提供高度的灵活性调查设计方案。 并行计算提供了机会,以扩大规模的模式,并包括其他部件,例如引擎。 据指出,发展应用的基础上确定的战略选择和自我适应的战略参数可能会导致更少的功能评价,从而提高计算效率。这将是今后的研究课题。此外,今后的工作目标是在应用的优化进程,大型构件模型和多学科优化涉及相邻属性,如刚度分析
参考资料
[1] Streilein T, Hillmann J. Stochastische Simulation und Optimierung am Beispiel VW Phaeton. VDI-Bericht Nr. 1701, 2002.
[2] Höfer C, Sakaryali C. Method for Automated Geometry Modification in Stochastic Analyses. In: 4th European LS-DYNA Conference, May 2003, Ulm, Germany.
[3] Will J, Bucher C, Riedel J, Akguen T. Stochastik und Optimierung: Anwendung genetischer und stochastischer Verfahren zur multidisziplinären Optimierung in der Fahrzeugentwicklung. VDI-Bericht Nr. 1701, 2002.
[4] Meyerwerk M. Optimierung in der Fahrzeugindustrie, Methoden und Anwendungen. VDI-Bericht 1701, 2002.
[5] C. Reed, Applications of Optistruct Optimisation to Body in White Design, Altair Engineering Ltd, Jaguar (2002).
[6] Hilmann J, Hänschke, A. Use of simplified models for the improved vehicle lay out with regards the vehicle Safety 10. Aachen Colloquium: Automobile and Engine Technology; 2001.
[7] Zimmer H, Hövelmann A, Schmidt H, Umlauf U, Frodl B, Hänle U. Entwurfstool zur Generierung parametrischer, virtueller Prototypen im Fahrzeugbau. VDI-Bericht Nr. 1559, 2000.
[8] Paas M, Ippen H, Schilling R. Structural Component Optimisation and Material Model Identification based on Generic Algorithms. VDI-11. Internationaler Kongreß Numerical analysis and simulation in Vehicle engineering, 01.–02. Oktober 2002, Würzburg.
回复 支持 反对

使用道具 举报

快速发帖

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

GMT+8, 25-5-2025 00:02 , Processed in 0.304872 second(s), 37 queries .

Powered by Discuz! X3.5

© 2001-2013 Comsenz Inc.