中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

  • 13014查看
  • 19回复

汽车发动机VVT技术详解

  [复制链接]

该用户从未签到

发表于 30-1-2007 20:19:46 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


汽车发动机VVT技术详解汽车发动机技术
近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。

发动机可变气门正时技术(VVT,Variable Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。

如今如本田的i-VTEC、丰田的VVT-i等也都是源自VVT的发动机控制技术。

对于一台4冲程发动机,按照很多人的理解,做功冲程末,活塞处于下止点时排气门开始打开,发动机进入排气冲程,直到活塞到达上止点,排气门关闭,进气门打开,发动机进入吸气冲程。当活塞正好运行一周重新回到下止点时,进气门关闭,发动机进入压缩冲程。这样来理解气门的动作是否正确呢?差不多是吧。

然而,可能和与人们的直觉不同的是,这样的气门正时效率并不是最优的。让我们先来考虑一下排气门开启的时机。如果比活塞到达下止点提前一点就开启排气门会怎么样呢?从直觉上,这时废气仍可推动活塞做功,如果打开排气门开始排气,此时气缸内的压强就会降低,能量的利用率也就降低了,发动机性能也会随之下降。是这样吗?其实也不一定。

我们知道,排气时活塞会压迫废气从而反过来对废气做功,这个过程会消耗一部分发动机已经获得的能量。如果在缸内压强相对较高时提前开始排气,排气过程就会更顺畅,从而在排气冲程减少了能量消耗。这样,一得一失,怎么才会最合算呢?考虑到活塞在下止点附近一定角度内垂直运动距离其实非常短,实际的发动机略微提前打开排气门效果会更好一些。再来看进气门关闭的时机。

如果在活塞越过下止点一定角度,开始压缩冲程之后再关闭进气门。如何呢?直观的感觉可能是,这时活塞已经开始上升,刚刚吸入的可燃混合汽岂不是又要被排出去一部分?性能会不会下降?答案是:只要时机适当,这样做反而可以增加吸气量,改善性能。因为在吸气冲程可燃混合汽被活塞抽入汽缸,进气门附近的气流速度可以高达每秒两百多米,而我们前面说过,在下止点附近活塞的垂直运动相对很慢,汽缸内体积变化并不大。此时进气岐管内的可燃混合汽靠惯性继续冲入气缸的趋势还是占了上风。

说到这里,对一些VVT技术有所了解的兄弟可能要不耐烦了:讲了这么多,和VVT边还没沾呢!不要急,还没讨论排气门的关闭时机和进气门的开启时机呢。这是大家可能都想到了,排气时同样会形成高速气流,如果排气门也在活塞越过上止点一定角度之后再关闭,虽然活塞已经开始下降,排气门附近的废气仍就会继续排出。但是此时进气门不是已经开启了吗?废气难道不会涌入进气岐管?

事实上,这又是个时机问题,燃烧室内的废气涡流的方向决定了废气短时间内是不会流向排气门对侧的进气门的,于是,一边进气一边排气的局面是完全可以实现的。事情还可以更理想。由于大部分废气在排气冲程中前期就已排出,并且在排气岐管中形成了高密度的高速气流,冲向排气管方向。这部分废气越是远离气缸,对于缸内尚未排出的废气来说,其需要填充的体积就越大,相应的平均压强也就越低。低到什么程度?低到活塞尚未到达上止点之前,缸内压强可能就已经低于进气岐管内可燃混合汽的压强了。如此看来,进气门也应当提前一点开启才好。

前边讲到了进气门和排气门同时打开的情况,也就是进气门和排气门的重叠。重叠持续的相对时程可以用此间活塞运行的角度来衡量,这样就可以抛开转速,把它作为系统的固有特性来看待了。重叠的角度通常都很小,可是对发动机性能的影响却相当大。那么这个角度多大为宜呢?

我们知道,发动机转速越高,每个汽缸一个周期内留给吸气和排气的绝对时间也越短,但是前面讲到的进气岐管或排气岐管内的气流也越快。想想看,这时发动机需要尽可能长的吸气和排气时间,而且也有有利条件可以利用,还犹豫什么?只要重叠的角度大一些不就行了?当然,也不能太大,前边说了,这里有个时机问题,重叠角度太大肯定也不好,要不干脆让进气门和排气门同时开闭得了。很显然,这个时机是与转速有关的,转速越高,要求的重叠角度越大。

也就是说,如果配气机构的设计是对高转速工况优化的,发动机就容易得到较高的最大转速,也就容易获得较大的峰值功率。但在低转速工况下,这样的系统重叠角度肯定就偏大了,废气就会过多的泻入进气岐管,吸气量反而会下降,气缸内气流也会紊乱,ECU也会难以对空燃比进行精确的控制,最终的效果是怠速不稳,低速扭矩偏低。相反,如果配气机构只对低转速工况优化,发动机的峰值功率就会下降。所以传统的发动机都是一个折衷方案,不可能在两种截然不同的工况下都达到最优状态。

说到这里,我们终于和VVT的主题接近一些了。不过还是再耐心一下,前面讲了半天,都只把注意力放在发动机的动力性方面了,下面让我们看看重叠角度对发动机的经济性和排放的影响。可能大家都知道,发动机的油耗转速特性曲线是马鞍形的,转速太高,超过了一定的范围,可燃混合汽的燃烧就会越发的不充分,发动机的经济性和排放特性都会恶化,尤其如今发达国家的环保法规曰益严格,问题就变得更加严重。

于是,很多厂商就采用复杂的废气再循环(EGR)装置来改善发动机的高转速经济性和排放。顾名思义,EGR装置的作用就是吸入部分废气,使其中的尚未燃烧的可燃物质有机会继续燃烧,部分有害中间产物得以分解。不难想到,如果此时将进气门和排气门的重叠角度调得高一点,略微超过原来所说的对动力性来讲最合适的角度一些,就会有部分废气和新鲜的可燃混合汽混合,提高了发动机的空燃比,使燃烧更充分,排放更清洁。大家可能发现了,这简直就是不需要额外装置的EGR技术嘛!然而很不幸,这种偏大的重叠角度设置,同样使发动机难以提供令人满意的低转速性能。

好了,现在不用我说,大家也知道为什么我们如此重视VVT技术了吧!各个厂家的VVT技术千差万别,共同之处就是都要对气门正时进行调节,使发动机在不同的转速下进气门和排气门能有不同的重叠角度,从而改善前面说的那些问题。改变气门正时可以有很多不同的方法,但最主要的无外乎两大类,一类是改变凸轮轴的相位,再一类就是直接改变凸轮的表面形状。想想看就知道,改变凸轮的表面形状哪可能容易呢?所以第一类VVT比较容易实现些。

回到Valvetronic,它依然保留了Double VANOS可变进、排气凸轮轴相位的气门正时调节系统,那么它又是如何实现对气门升程进行连续调节的呢?BMW为此增加了一种额外的偏心轴,凸轮轴则又通过一个额外的摇臂系统驱动传统的气门摇臂,并且该附加摇臂与气门摇臂的接触的角度取决于附加偏心轴的相位。附加偏心轴的相位可以由一个ECU控制下的调节装置来调整,从而使附加摇臂的角度发生变化,这样,对于相同的凸轮运动,传递到气门摇臂上的反应就可以不同,气门的升程也就会相应发生变化。

从BMW的资料看,Valvetronic系统对气门开放时程的影响应当不大,调节的只是气门升程。不过,气门开度很小的时候,气体的进出效率是很低的,如果考察气门开度超过一定程度的持续角度,姑且称之为有效的气体交换时程,通常也是随气门升程的增加而增加的。为了限制发动机的复杂度,目前实际应用的Valvetronic系统在气门升程方面,调整的只是进气门。尽管理论上类似系统也可以作用于排气门,但那样的话整个配气机构就过于复杂了。就目前Valvetronic的发展情况来说,由于参与气门运动的机件还是太多,高转速下机械能损耗就大,不利于提高发动机的最大转速。所以在提高升功率方面,Valvetronic的表现是不及一些诸如VTEC之类的更简单的气门升程调节系统的,它的优势在于综合能力,在于发动机经济性的提高。

如果说VVTL-i、i-VTEC和VarioCam Plus是融合了第一类和第二类VVT的话,Valvetronic在可变气门升程方面采用的方式似乎可以看作是独辟蹊径的第三条道路。还有其他的VVT吗?有。BMW的工程师强调对气门升程进行调节,Rover的工程师则选择了气门的开放时程作为调整的目标。在Rover VVC中,由于凸轮可以受设计独特的偏心轮驱动,其转动并非匀速,这样一来,在调整气门正时的同时,气门的开放时程也发生了改变,尽管升程并没有变化。VVC系统相当复杂,我也没见过具体的结构图,对其具体原理也不太清楚,只知道它通常只用于调节进气门,而且可以做到连续的改变进气门正时和开放时程。疯狂的英国人!

本文写到这里,还从来没有提到Mercedes-Benz发动机的VVT技术呢,很多人会感到奇怪了吧?其实尽管Mercedes-Benz发明了无数的电子技术,各种新配置总是层出不穷,D-C在发动机方面却一贯比较保守,目前为止,它的确在VVT领域走在了后面,大部分车型的发动机实在是乏善可陈,还是多年未变的每缸三气门SOHC结构,也没有使用任何VVT技术。所以,Mercedes-Benz车在同级车中往往是升功率偏小,动力一般,油耗不低。然而世事无绝对,最近我也注意到,在新款CLK等车型上,D-C也在暗暗的抛出猛料。

不但顺应主流,改为使用四气门DOHC结构,什么汽油直喷,双火花塞,VVT全都一下子冒了出来。永远不要低估D-C的技术储备,它的VVT是和Valvetronic一个水平的:两个凸轮轴的运动通过三个摇臂系统复合在一起,理论上,可以同时提供进、排气门的正时、开放时程和升程调节。听上去不错?还有呢!在D-C正在开发的另一套VVT系统中,发动机的凸轮轴被彻底的抛弃了,每个气门,或每几个气门的动作直接由专门的电磁系统驱动,ECU需要它们怎么动,它们就怎么动,这也正是VVT技术追求的最高境界!相信各个大厂都有类似的努力吧!


常用的制动装置

汽车内饰

该用户从未签到

发表于 13-4-2007 10:31:46 | 显示全部楼层
双火花塞最大的作用是加快火焰传播速度。
我们知道影响汽油机油耗,性能很大的一个因素是压缩比,提高压缩比可以有效的降低油耗,提升缸内平均有效压力。但是其不能无限制的提升,因为它受到了火焰传播速度的限制,过大的压缩比导致正常火焰中心还没有传播到边缘的时候,边缘的压缩混合气由于高温自燃了,从而产生爆震。
双火花塞的布置在燃烧室的不同地方,可以有效缩短火焰传播距离,加快火焰传播。不知道这样解释你是不是能理解。
回复 支持 1 反对 0

使用道具 举报

该用户从未签到

发表于 12-4-2007 16:43:45 | 显示全部楼层

回复 #6 石雨 的帖子

好学习了,就是还有点双火花塞它有什么独到之处不明白。

该用户从未签到

发表于 16-1-2008 22:32:56 | 显示全部楼层
正时机构!!研究过

该用户从未签到

发表于 3-2-2008 23:39:19 | 显示全部楼层
终于知道vvt结构了..多谢楼主了..

该用户从未签到

发表于 15-2-2008 21:08:16 | 显示全部楼层
正在VVT控制迷惑中,学习了,
楼上的几位大大,有VVT相位标定的试验报告么?可否参考。

该用户从未签到

发表于 10-5-2009 13:20:51 | 显示全部楼层
怠速重叠角小,中高速重叠角大,高速重叠角较小,这句话对吗?请教
回复 支持 反对

使用道具 举报

  • TA的每日心情
    开心
    30-11-2015 21:40
  • 签到天数: 1 天

    [LV.1]初来乍到

    发表于 14-4-2011 18:24:05 | 显示全部楼层
    专业用语是配气相位角度
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 16-4-2011 15:29:09 | 显示全部楼层
    VVT作用于MIVEC哪一个效果更好呢?
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 16-4-2011 18:16:25 | 显示全部楼层
    汽车的正时系统安装还是比较麻烦的,不过重要性不言而喻的。
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 18-4-2011 10:42:08 | 显示全部楼层
    发动机可变气门正时技术(VVT,Variable Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步

    来自上文,能理解这么回事,虽然说不清
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 21-4-2011 16:03:08 | 显示全部楼层
    VVT系统的原理都是一样的,但实现方式却很多
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 8-5-2011 09:28:00 | 显示全部楼层
    vvt和vvi真有这么好吗?欧美汽车厂家用的多吗?
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 8-5-2011 23:01:49 | 显示全部楼层
    双火花塞听说过!!!
    回复 支持 反对

    使用道具 举报

    该用户从未签到

    发表于 13-5-2011 16:26:40 | 显示全部楼层
    给大家介绍一下一种利用调相器作为发动机可变配气正时核心元件的技术,这个技术应用在许多可变配气相位的发动机上:以VW 1.4TSI发动机为例。

    可变正时系统的核心元件“叶片槽式调节器”位于左侧进气凸轮轴外端


    具有的VVT叶片槽式调节器由外壳体、内部叶片转子以及位于叶片转子内部的锁销组成。其中,外壳体与外部的正时齿轮固定,实现曲轴通过链条传动驱动进气凸轮轴的功用;而位于壳体内部的叶片则直接与进气门凸轮轴固定,并与之一同旋转,通过带动凸轮轴与壳体产生相对的转动位移,来实现凸轮轴的进气相位改变;而锁销的主要功用,则用于外壳与叶片的连接,实现进气相位的固定,防止凸轮轴复位。

    气门正时可变则由上述核心元件来共同协调执行,其中,ECU储存了最佳气门正时参数值,在发动机运转过程中,ECU通过收集凸轮轴位置传感器、节气门位置传感器、曲轴位置传感器等相关元件反馈的信息,并与存储的最佳参数值进行对比,在计算出修正参数后,发出指令到凸轮轴调整电磁阀。

    电磁阀则根据ECU的指令,通过改变机油液压实现对于内部机油槽阀位置的控制,把提前、滞后、保持不变等压力信号指令,转化为输送至叶片槽式调节器中不同油道上的机油压力,通过双油道机油压力差值驱动调节器中的叶片,带动凸轮轴旋转改变进气相位实现气门正时的“提前”或者“滞后”,从而实现气门正时的连续可变。而1.4TSI的正时相位调节范围可达20°凸轮轴角或40°曲轴角,为大众该款核心动力在减少排放和燃油消耗,以及改善动力性能表现上提供了积极的“可变”保障。

    集成正时链轮的进气调相器.bmp
    调相器结构.bmp
    调相器介绍.bmp
    调相原理.bmp

    评分

    参与人数 1贡献值 +2 积分 +8 收起 理由
    清雅轩 + 2 + 8 回帖有奖【论坛口号→知无不言,言无不尽】

    查看全部评分

    回复 支持 反对

    使用道具 举报

    快速发帖

    您需要登录后才可以回帖 登录 | 注册

    本版积分规则

    QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

    GMT+8, 29-3-2024 02:40 , Processed in 0.669739 second(s), 85 queries .

    Powered by Discuz! X3.5

    © 2001-2013 Comsenz Inc.