中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

  • 8425查看
  • 6回复

电动汽车用永磁无刷直流电机的有限元分析

[复制链接]


该用户从未签到

发表于 18-4-2007 20:41:55 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


摘 要:设计了一种电动汽车用永磁无刷直流电机,采用外转子结构,其目的是嵌在汽车的轮毂内以实现直接驱动,而不需齿轮传动装置,可以实现低速、高转矩、高效率、变速运行。文中着重叙述用Ansys软件对该种电机的磁通、磁感应强度以及转矩进行有限元分析。
关键词:电动汽车;永磁无刷直流电机;有限元分析

1 引 言

电动汽车公害少,节约石油消耗,结构简单,维修容易,使用寿命长,受到世界各国的青睐。永磁无刷直流电动机与相同功率的其他类型的电动机相比,体积小,质量轻,在质量、效率、价格等方面有相当明显优势,永磁无刷电动机没有电刷和滑环等零件,结构更简单,性能更可靠,环境适应性好,更加适合作为电动汽车的驱动电动机。由于一般采用方波供电,在相同的峰值电压和峰值电流下,方波电流和方波磁场相互作用产生的转矩要大,所以永磁无刷电动机可以输出较大的电磁转矩。

随着电子技术与控制技术的迅速发展,如果将电动机直接安装在汽车的轮毂内,通过电气控制实现调速和直接驱动(2轮或4轮),则汽车内可以省去复杂的齿轮变速使动机构,汽车结构大为简化,质量大为减轻。世界先进国家已将其作为发展方向,开展研究,有的国家已研制成样机。

但是,由于轮毂内径的限制,永磁电机的体积受到限制,而又要产生较高的转矩,这就给电机的设计带来一定的难度。而且,永磁无刷直流电机的设计,既不能简单地套用永磁同步电动机的方法,也不能简单地套用直流电动机的方法。要根据特点,寻找一种较为准确的设计方法[1]。在此,采用了磁路计算与磁场分析相结合的设计方法对三相永磁无刷直流电动机进行了研究。电动汽车控制结构如图1所示[2]。
2 电机电磁计算

根据我们所编制计算程序,对1台8kW、12极外转子无刷直流电机进行了设计计算。

2.1 基本输入数据

额定输出功率:PN=8 000W
额定转速:nN=685r/min
电枢外径:Da=0.31m
电枢内径:D0=0.08m
槽数:Q=45
剩磁密度:Br=1.05T
矫顽力:Hc=800kA/m
相数:m=3

2.2 计算结果

2.2.1 性能计算

定子电流I1=24.05A,电磁转矩Tn=112.33N.m,输入功率P1=8656.74W,反电势E=349.70V,实际转速n=677.20r/min,效率η=92.41%。

2.2.2 绕组数据

线负荷:A=311.11A/cm
电流密度:J=6.86A/mm2
热负荷:AJ=2134.21A2/cm*mm2

2.2.3 磁路计算

空载点标么值:b00=0.925 36,h00=0.074 64
负载点标么值:bn=0.084 196,hn=0.158 04
每极磁通:Φ=0.004 390 5Wb
气隙磁密:Bδ=0.767 6T
定子齿磁密:Bt2=1.763 5T
定子轭磁密:Bj2=0.257 1T
转子轭磁密:Bj1=0.855 6T

2.2.4 空载特性曲线

空载特性曲线如图2所示。
2.2.5 不同负载率的工作特性

工作特性如图3所示。
3 有限元分析

ANSYS程序的电磁能力可用来分析电磁场多方面问题。ANSYS程序提供了丰富的线性和非线性材料的表达方式,包括各向同性或正交各向异性的线性磁导率,材料的B-H曲线和永磁体的退磁曲线。后处理功能允许用户显示磁力线,并计算磁通密度和磁场强度、力、力矩和其它参数。本例中应用2-D静态磁场分析,采用矢量磁势方法,模拟各种饱和磁性材料和永磁体。静态磁场分析主要由6个步骤组成:

(1)建立模型
(2)创建物理环境,赋予特性
(3)剖分网格
(4)加边界条件和载荷
(5)求解
(6)后处理

3.1 在ANSYS中创建实体模型

将计算结果作为建立模型的输入数据。进入前处理(PREP7)开始建立模型。利用几何元素和布尔操作生产基本的几何形状。此模型的难点在于槽的复制,在柱坐标系下转动工作平面后映射即可。图4为2-D模型示意图。
3.2 创建物理环境,赋予材料特性

3.2.1 定义单元类型

用表1中所示两种单元均可[3]。
3.2.2 定义材料特性:

一共用到4种材料,将模型中不同部分分别赋予不同的材料值。

(1)气隙与槽:空气,材料特性:μr(MURX)=1
(2)定子:DW465-50,材料特性:B-H曲线
(3)转子:10#钢,材料特性:B-H曲线
(4)磁极:永磁体,材料特性:μr(MURX)=1.05,Hc(矫顽力矢量):MGXXMGYY分别依磁极的具体位置而定,如图2分布的12个磁极矫顽力矢量的X、Y分量见表2。
3.3 剖分网格

选择自由网格划分中的智能划分(Smartmesh),智能单元的大小可以自由控制。剖分结果如图5所示。
3.4 加边界和载荷

一般,认为磁力线沿电机外侧表面闭合,这条边界属于第一类齐次边界,很多情况下电机轴的外表面也被取为第一类齐次边界,赋值A=0。

永磁电机由永磁体作为激励源,通过材料特性中矫顽力设置即可,不必另外加激励。

分析空载情况时,不必加载荷;分析负载情况时,在槽内区域加负载电流。

3.5 求解[3]

进入到求解器Solution,可以选择下列任何一种求解器:Frontal,JCG,ICCG,PCG求解器,而对于2-D模型,推荐用波前求解器。当进行非线性电磁场分析时,ANSYS计算收敛准则,每次平衡迭代具有相应的收敛标准。在求解进行中,可以打开“图形求解跟踪”。

3.6 后处理

进入到通用后处理器POST1,可观察整个模型或模型的一部分在某一时间上针对特定载荷组合时的结果,POST1有许多功能,包括从简单的图象显示到复杂的数据列表。

3.6.1 求解后得到的基本数据是磁矢量的Z轴分量AZ,由AZ可以得到派生数据[4]

(1)计算磁通Φ

根据斯托克斯定理可得:
通过曲面a磁通等于磁矢位沿这个面的边界线的闭合线积分。这通常比用磁密B计算容易得多。
(2)计算感应电动势
(3)画磁力线

二维磁场的B只有两个分量,比如Bx、By,而A只有一个分量Az,简写为A。在二维场中,磁力线就是等A线。
3.6.2 映射结果到某一路径上

POST1的一个最有用、功能最强的特征是能够映射任何结果数据到模型的任意一条路径上。这样一来就可以沿该路径执行许多数学运算和微积分运算,从而得到有意义的计算结果。有用的附带好处是,能以图形或列表方式观察结果项沿路径的变化情况。
(1)定义电机中的气隙为一条路径。

(2)将磁感应强度B的径向分量Br映射到路径上。
(3)沿路径显示数据,如图7所示。
3.6.3 用麦克斯韦应力张量法计算转矩[4]

麦克斯韦应力张量法是由电磁场理论推导出的转矩计算方法。在二维电磁场中,作用于电机定子或转子上的切向电磁力密度电磁转矩由切向力产生,如果沿半径为r的圆周积分,则电磁转矩的表达式为:
Br,Bθ分别为半径r处气隙磁密的径向和切向分量。

4 结 语

电磁场是电机能量传输的核心,利用有限元方法对电机电磁场参数的分布和大小可进行准确的数值计算,可见ANSYS软件是电机设计的有力辅助工具。根据永磁无刷直流电机的工作原理和结构特点,我们对其设计方法进行了研究。编写了《永磁无刷直流电动机设计程序》和《永磁无刷直流电动机电磁场数值分析程序》,前一个程序的计算结果作为后一个程序的输入数据,我们取磁路计算法速度快的优点,大量的计算(包括优化计算)都用磁路法进行,磁场分析法只用于核算电磁转矩等参数,计算次数较少,这样经过两个程序若干次轮换计算,可以得到比较满意的结果。我们认为用磁路计算和磁场分析相结合设计永磁无刷直流电动机的方法是成功的。通过磁场分析,我们发现仍有许多问题有待进一步研究,例如转矩的波动问题,采用六相或五相,电机的力矩特性更为合理。


该用户从未签到

发表于 10-11-2008 22:02:24 | 显示全部楼层

谢谢分享

哈,正需要这个。我的研究方向所在


该用户从未签到

发表于 1-3-2010 17:25:00 | 显示全部楼层
下了,谢谢!
有没有其他挣钱的方式
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 1-3-2010 18:53:37 | 显示全部楼层
挺理论的啊,看起来有点迷糊吖
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 24-3-2010 21:33:58 | 显示全部楼层
这论坛,高水平帖子真不少。
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 19-11-2010 11:26:49 | 显示全部楼层
旋转磁场直流电动机问世--直流传动将焕发青春的活力--洋人的变频调速技术很快彻底淘汰

我为实现把旋转电枢直流电动机的定子磁场布置在转子上,把转子的绕组布置在定子上。用最简单的办法对定子绕组实现逐线圈换向,做出了长期不懈的努力。


自从大功率半导体器件出现以来,几代电动机研究者都希望用大功率器件和传感器,取代换向器和电刷。希望制造出:具有异步电动机的耐久性和旋转电枢直流电动机的转矩性能与调速性能之电动机。----而今由我们中国人实现了他们的梦想。


我用18年找到了直流电动机转矩性能于调速性能优良的原因是逐线圈换向——为证明真实性我首先公布理论--逐线圈换向的是直流电动机,逐相换向的是交流电动机。

在逐线圈换向的前提下,实现旋转磁场在旋转之中,每一个磁极对应定子导体的电流始终向一个方向流动。《用电流跟踪器取代换向器和电刷》定子的导体电流方向始终跟踪转子的磁极,就能实现零转速到额定转速恒转矩变压调速,而且没有转矩波动,可彻底淘汰变频调速器,变压调速的斩波器将风行天下。

直流电动机的定子磁场和转子磁场始终垂直90度,通电导体始终处在磁场的最大受力位置,所以能产生强大而又平稳的转矩,这种优点是异步电动机难以望其项背。旋转磁场直流电动机没有换向器和电刷,使用寿命和异步电动机一样长。转子的强度和异步电动机一样高,功率密度不再受到转速低的限制,在相等质量下功率可以远远超过异步电动机。

旋转磁场直流电动机 在硬特性领域,使用永磁有利于提高控制精度 用电效率和安全,如数控机床 大型轧钢机 矿井提升机 港口塔吊 因为它有切断电源自动刹车功能,特别适应矿山提升机安全生产。在 电动自行车 电力机车 电动汽车 可以使用 串励无刷 因为它具有汽车变速箱的输出特性,会使交通工具的行驶性能更加完美。

在同步电动机上安装同步换向器不能叫无刷直流电动机,是科学界的指鹿为马,因为它是逐相换向--是交流电动机,它永远找不到直流电动机的转矩性能和调速性能。

旋转磁场直流电动机,具有异步电动机的耐久性能和旋转电枢直流电动机的转矩性能于调速性能,是性能最完美的电动机,直流变压调速不会产生谐波污染电网,调速成本非常的低。它可以把有限的原材料制造成更有市场价值的商品,可成为企业会下金蛋的鹅,在整个工业领域将引发一场电动机革命,旋转磁场直流电动机以当今IEGT的功率容量4500v5500A,单机功率做到50000KW是轻而易举。从事电机研究的工作人员来南召县云阳镇看一看我的科技成果,就知道这一切都是真的。
此项技术如果让西门子 东芝 等大公司购买,中国的电机制造企业就会遭受毁灭性的打击,成千上万的工人会失去生活来源。这是因为我国大功率IGBT  IEGT制造几乎是空白,而西门子 东芝 英飞凌---具有先天优势。 13503873417 李佳君

变频调速器淘汰有如下原因

1价格昂贵 变频器比电机还贵 多数企业难以承受

2产生谐波严重污染电网 破坏电网功率因数 使电气设备误动作 大幅度增加供电消耗

3低速转矩太弱 需要重负荷启动设备不能应用

4低速转矩波动严重 高精度控制领域不能应用

5高达2000-20000赫兹的载波频率 产生严重的电磁辐射危害人体 干扰电子设备正常工作

6载波频率导致涡流消耗和磁滞消耗增加 线圈的趋肤效应猛增导致电机发热严重 致使电机的工作效率底下

7功率模块经常烧坏 需要增加巨大的维护成本 一些企业哭笑不是

8轴流引起电机轴承加速损坏 使用变频器的异步电动机需要经常更换轴承

9变压调速的旋转磁场直流电动机问世 变频调速器已是穷途末路


变频调速器能红极一时,是因为旋转电枢直流电动机的寿命太短。事实是直流电动机的调速成本最低 精度最高 设备最简单。只要直流电动机能长寿,变频调速器就是废铜烂铁。

旋转电枢直流电动机在运转的时候,定子磁场和电枢磁场是静止垂直90度,旋转的是电枢,电枢的磁场并不旋转。换向器的作用就是保证电枢的磁场和定子的磁场始终保持静止90度而换向。

旋转磁场直流电动机在运转的时候,定子的磁场和转子的磁场,是在旋转之中垂直90度。用逐线圈换向技术制造电流跟踪器,取代换向器和电刷,因此旋转磁场直流电动机变的和异步电动机一样长寿。

旋转磁场直流电动机的转子做成无刷励磁或永磁的时候,它的强度和异步电动机的转子一样高,造价非常低。像异步电动机一样,脆弱线圈不动,坚固而又简单转子在高速旋转。

旋转磁场直流电动机的定子线圈,能产生稳定的反电势阻止谐波的生成,无论IGBT的关断速度多么快,也不会产生自感电压击穿IGBT和绝缘。小功率电机在6000转的时候IGBT的工作频率是200赫兹,大功率电机3000转的时候工作频率是100赫兹。不像变频调速器载波频率高达2000到20000赫兹,产生严重的电磁辐射,危害人体干扰电子设备,产生谐波污染电网。
变压调速的旋转磁场直流电动机问世,变频调速器已是穷途末路,科技在推陈出新。
为实现直流电动机长寿的梦想,我付出了18年的努力。

中国人在电力传动领域将扬眉吐气    从此不再受制于西方人
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 8-12-2010 08:28:28 | 显示全部楼层
电动汽车的推出,新能源的开发,利用。 中国人都是最强的。
回复 支持 反对

使用道具 举报

快速发帖

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

GMT+8, 12-7-2025 06:26 , Processed in 0.340059 second(s), 38 queries .

Powered by Discuz! X3.5

© 2001-2013 Comsenz Inc.