中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

  • 5810查看
  • 19回复

缸孔平台珩磨工艺介绍

[复制链接]


该用户从未签到

发表于 13-4-2010 09:48:50 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


缸孔平台珩磨工艺介绍
在现代发动机制造领域中,人们努力寻求各种新的工艺方法,用来保证零件的制造精度,以提高发动机的性能和寿命。在实际生产中,通过对发动机缸孔珩磨工艺的优化,可以有效降低机油消耗量,提高发动机的使用寿命。
缸孔作为发动机完成燃料压缩、燃烧及爆发做功的能量转换室,与活塞形成发动机的最为重要的摩擦副,承受着各种载荷和温度的剧变,因此缸孔加工工艺的选择将直接影响到发动机的功率输出、机油消耗、尾气排放及发动机的可靠性。
国内外日益严格的排放法规和国Ⅲ排放法规的实行为各发动机制造公司在产品开发和制造领域提出了新的挑战,为此,一汽海马动力有限公司(简称“一汽海马”)对自己的产品进行了升级,同时对缸孔的珩磨工艺进行了优化,以降低机油消耗量和提高发动机的使用寿命。在此,本文将结合一汽海马的发动机产品重点介绍缸孔平台珩磨工艺的现场实际应用情况。
缸孔珩磨工艺的发展
目前发动机的缸孔加工工艺基本上都是按照:粗镗-半精镗-精镗-珩磨来设计。珩磨工艺的发展又可分为四代:
第一代珩磨为手动或脉冲间歇式液压膨胀进给,这种珩磨只进行一个阶段的珩磨,一般不分粗珩和精珩。其缺点是珩磨压力不稳定,影响加工的形状精度,尺寸控制完全靠工人的经验和不断地停机测量来保证,加工出来的缸孔质量水平低且难以稳定。
第二代珩磨为两阶段(粗珩、精珩)的自动液压膨胀进给珩磨。特点是两组不同的珩磨油石在同一个珩磨头上呈对称、间隔分布,粗珩、精珩条由特殊的液压双联进给系统自动控制,可在一次装夹中完成粗、精珩,缸孔尺寸采用气动非接触式主动测量装置进行自动控制。
第三代珩磨为三阶段(粗珩、基础珩及平台珩)的平台珩磨或滑动珩磨。机床的主动测量系统和控制系统与第二代相似但更趋智能化,但珩出的缸孔表面结构得到了本质上的改变。
第四代珩磨以激光珩磨为代表,它不是传统意义上的接触式的机械加工,而是通过光导系统将激光器产生的光束聚焦到孔壁上,经过数控系统可以保证激光加工头灵活地按照用户所要求的表面结构进行加工,缸孔表面更加规则、理想;但是,激光珩磨设备维护成本昂贵,技术含量高,操作复杂,对维修人员要求素质高,维修难度大,现在国内应用较少。
目前,乘用车发动机的缸孔珩磨工艺采用的几乎都是平台珩磨或滑动珩磨。上述两种珩磨分别为欧洲的两大主流珩磨机厂家发展的不同方向。Gehring珩磨机主要是以平台珩磨为主,向激光珩磨方向发展;Nagel珩磨机主要是以滑动珩磨为主,向螺伞滑动珩磨方向发展。无论哪种珩磨,最终都是为了得到较好的储油表面结构,一汽海马目前采用的是Gehring平台珩磨工艺。
平台珩磨加工过程及影响因素
1. 平台珩磨加工过程
平台珩磨是在对已磨合完的发动机缸孔表面进行微观分析和研究的基础上,开发的一种珩磨工艺。平台珩磨的显著优点为:良好的表面耐磨性;良好的油膜储存性,可使用低摩擦力的活塞环;降低机油消耗;减少磨合时间(几乎可省掉)。
平台珩磨一般分为三个阶段(或称三个工序):粗珩、精珩(表面基本结构加工)和平台珩,从而形成理想的缸孔表面,如图1所示。粗珩是修正和稳定精镗后的形状精度,此外还要形成一个基本的表面结构;精珩使缸壁的宏观几何形状将得到改善,并且表面的基本结构C也将被加工出来;平台珩使表面基本结构C的表面尖峰将在几秒钟内被珩磨掉,从而形成一个小平台,该小平台也就是所谓的平台支承表面,该平面的表面光洁度很高,同时又具有较高和较好的支承率。

图1 理想的缸孔表面

实现平台珩磨的珩磨头的结构特点一般在平台珩磨刀具上有两套不同的砂条,它们各自配有一套独立的涨刀装置。一套砂条用于平台基本结构珩磨(精珩), 另外一套砂条则是用于平台表面加工(平台珩)。该双进给刀具也可以用于粗珩和精珩珩磨,如图2所示。


图2 平台珩磨头
这种刀具主要的优势是:可在同一个工位一次装夹,使用同一根主轴,就可进行两次不同的珩磨加工。除去其在经济性上的明显优势外,它还可以保证稳定的平台表面。在实际生产中,一汽海马就是采用该种结构的珩磨头在一个工位上实现精珩和平台珩的。
2. 影响平台珩磨的因素
珩磨砂条的选择是制定缸孔珩磨工艺的一个至关重要的条件,砂条的烧结技术直接影响砂条的质量。一般来说,珩磨砂条主要采用氧化铝(Al2O3)、碳化硅(SiC)、立方氮化硼(CBN)和金刚石等磨料。常见的结合剂有陶瓷结合剂、人造树脂结合剂、铜基金属结合剂、银基结合剂以及钴基结合剂等。一汽海马采用的为铜基金属结合剂的金刚石珩磨砂条。


上换向点和下换向点的设置直接影响缸孔形状,如图3所示。一般来说,珩磨时砂条的伸出长度为砂条本身长度的三分之一被证明是最理想的,当伸出长度上下对称时,我们可以得到一个理想的圆柱度,如图3中a所示;若砂条伸出长度太大时,因砂条的很大一部分在孔的上下两棱被磨利,并在这一区域造成很大的切削量,且由于砂条和孔壁的贴靠面积减小, 从而增大了涨刀压力,也会造成大量切削,从而造成两端喇叭口的形状,如图3中b所示;若砂条伸出长度过小,砂条会在孔的中间部位形成过量切削,从而造成腰鼓性的孔,如图3中c所示。
  
图3 珩磨上换向点和下换向点位置
除了珩磨砂条及珩磨加工参数对加工质量及效率有重大影响外,珩磨液对加工质量也是很重要的。珩磨液要求黏度低,具有极好的渗透性、润滑性和排屑性,要有很强的清洗能力以保持珩磨油石的自砺和微孔的畅通,并且要求抗烟雾性好,燃点高。目前所使用的珩磨液可分为两大类:油基和水基珩磨液。两种冷却液各有优缺点,油基优点是渗透性、润滑性好,排屑性和清洗能力强,缺点是燃点低、抗烟雾性差,废弃时难以处理且不环保;对水基珩磨液来说,优点是安全性、环保性好,抗烟雾性好,冷却性好,可进行处理以适应环保要求,缺点是渗透性、润滑性差。近年来,欧洲一些国家越来越流行使用水基珩磨液替代珩磨油以适应日益严格的环保要求。
总体来说,每个具体的珩磨加工参数的确定是需要根据实际的工艺参数和工件的测量结果来设定。


缸孔平台评价参数及评定方法
珩磨加工结束后的缸孔除了尺寸公差、圆度、圆柱度、垂直度和位置度要求外,表面粗糙度、平台结构、网纹角和沟槽形态等均需要得到正确的测量和分析。一般来说,缸孔的尺寸、形位公差可以分别用摇杆表或电感量仪、CMM测量机和圆度仪完成测量,表面粗糙度、平台结构、网纹角和沟槽形态则需要用粗糙度仪、光栅电子显微镜和贴片以及切片分析等测量仪器或方法来完成。
上述评价内容中,表面粗糙度是非常重要的项目,对于缸孔平台参数一般按照ISO 13565(DIN 4776)标准规定的5项粗糙度指标来评价,分别为Rk、Rpk、Rvk、Mr1和Mr2,如图4所示的ABBott曲线。其中,Rk代表中心峰谷高度,也是平顶珩磨的核心粗糙度参数,一般控制在0.5~1.0μm之间;Rpk代表减小的波峰高,是活塞环工作时初期磨损的高度,越小越好,一般控制Rpk在0~0.5mm之间;Rvk代表减小的波谷深,在正常磨损范围内,能够保持良好的润滑的沟槽部分的最大深度,过大容易出现烧机油现象并且活塞漏气量大,过小润滑不充分,加剧活塞环磨损,一般控制Rvk在1.2mm左右;Mr1代表在中心轮廓以上的轮廓支撑长度率,一般控制在2%~8%之间;Mr2代表在中心轮廓以下的轮廓支撑长度率,一般控制在70%~85%之间。


图4 ABBott曲线
此外,通过上述参数可以计算出缸筒内表面的储油量、磨合余量和运转余量,可以对发动机的磨合期、大修里程和机油消耗量等进行理论计算。

Vr表示单位表面的储油体积,计算公式为:
Vr=(1-Mr2)×Rvk / 20 2
Vsr表示单位表面磨合余量的体积,计算公式为:
Vsr=Mr1×Rpk/20
Vsf表示单位表面运转余量的体积,计算公式为:
Vsf=Rk/20
下面介绍一种测量缸孔珩磨夹角、表面结构、沟槽形态、平台结构、砂条的切削特性、微卷边及砂眼等特性的贴片测量方法,如图5所示。


图5 贴片测量方法

先对被测试的表面进行清洗,然后对其喷射特殊清洁剂(1),以去除污物及残余珩磨油(不要用抹布擦洗);将工件略微倾斜,用几滴醋酸均匀湿润被测试表面(2);在润湿的表面上铺上24mm×100mm 大小的贴膜,并用干净的手指进行轻微的按压和摩擦(3);3~5min后揭下贴膜,测试表面的细小污物也将全部被贴膜粘起;然后再重复这个贴膜过程(注意:醋酸绝对不能直接滴在贴膜反面),这一次在3~5min后揭下,并立即放入显微镜的两个玻璃夹片中卡紧,这样就可以在放大100倍显微镜下观察测试表面的结构,如图6所示。


图6 放大100倍测试表面结构
Vr表示单位表面的储油体积,计算公式为:
Vr=(1-Mr2)×Rvk / 20 2
Vsr表示单位表面磨合余量的体积,计算公式为:
Vsr=Mr1×Rpk/20
Vsf表示单位表面运转余量的体积,计算公式为:
Vsf=Rk/20
下面介绍一种测量缸孔珩磨夹角、表面结构、沟槽形态、平台结构、砂条的切削特性、微卷边及砂眼等特性的贴片测量方法,如图5所示。

一汽海马采用的Gehring平台珩磨的主要加工参数

先对被测试的表面进行清洗,然后对其喷射特殊清洁剂(1),以去除污物及残余珩磨油(不要用抹布擦洗);将工件略微倾斜,用几滴醋酸均匀湿润被测试表面(2);在润湿的表面上铺上24mm×100mm 大小的贴膜,并用干净的手指进行轻微的按压和摩擦(3);3~5min后揭下贴膜,测试表面的细小污物也将全部被贴膜粘起;然后再重复这个贴膜过程(注意:醋酸绝对不能直接滴在贴膜反面),这一次在3~5min后揭下,并立即放入显微镜的两个玻璃夹片中卡紧,这样就可以在放大100倍显微镜下观察测试表面的结构,如图6所示。


结语
不同产品的发动机机油消耗量目标值不一样,缸孔的平台参数和珩磨加工参数也不一样。它需要通过机油消耗、尾气排放、活塞漏气量以及活塞环机械磨损评估等一系列试验验证和实际加工摸索才能制定出来,同时还要经过路试和最终用户的考验。我们将在以后的产品研制和生产制造过程中,始终致力于改善发动机机油消耗、减少有害物质排放和延长发动机大修里程,对所有系列的发动机产品缸孔珩磨工艺进行摸索、积累和持续改进,从而制定适用于自己产品的珩磨工艺标准。




缸孔平台珩磨工艺及评定方法(葛延翔 郑云龙)
在发动机的制造生产当中得到了广泛的应用,极大地提高了用户的生产效益。
缸孔平台珩磨技术作为内燃机缸孔或缸套精加工的一种新工艺,初期主要用于高压缩比的柴油机,近几年有了进一步的发展,在汽油机上也得到了广泛的应用。平台珩磨技术可在缸孔或缸套表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。

1、缸孔平台珩磨的工艺过程
为形成平台珩磨表面,在大批量生产时一般需要进行粗珩、精珩、平台珩磨三次珩磨,其作用分别是:
●粗珩:预珩阶段,主要是要形成几何形状正确的圆柱形孔和适合后续加工的基本表面粗糙度。
●精珩:基础平台珩磨阶段,形成均匀的交叉网纹。
●平台珩:平台珩磨阶段,形成平台断面。
要想获得理想的表面平台网纹结构,对精珩和平台珩的同轴度要求很高,因此将两个阶段合并成一次加工更为合理,通过设计成有双进给装置和装有精珩、平台珩两种珩磨条的珩磨头,能够实现一次装夹即可完成精珩和平台珩,消除了重复定位误差的影响,可以减轻前加工的压力和对机床过高精度的要求。

2、平台珩磨表面质量的评定方法
由于采用国际标准中的Ra、Rz等参数不足以精确表示并测量平台珩磨表面,因此,发动机制造商纷纷制定了自己的平台珩磨表面标准。经过几年的实践和发展日趋完善,但至今没有统一的平台珩磨技术规范,由于一汽大众公司及一汽轿车公司均采用德国设备和德国标准,这里主要介绍德国用于评定平台珩磨表面质量的几个参数及相应标准。
(1)均峰谷高度Rz(DIN)(Mean peak-to-valley height)
在滤波后轮廓的5个彼此相连的取样长度范围内局部峰谷高度Zi的算术平均值。
局部峰谷高度Z则是两条平行于中线的,在取样长度范围内通过轮廓的最高点和最低点的平行线之间的距离。
值得注意的是,Rz(DIN)与国际标准中的Rz(微观不平度十点高度)是不同的。
(2)波度Wt(Total waviness height)
如图3所示,波度为经过滤波轮廓的水平方向上的最大峰谷高度。
(3)核心剖面深度RK(Core roughness depth)系列参数
核心剖面深度RK(Core roughness depth)系列参数包括核心剖面深度RK、尖峰高度Rpk(Reduced peak height)、沟痕深度Rvk(Reduced valley depth)、尖峰材料比率Mr1(Peak material ratio)、沟痕材料比率Mr2(Valley material ratio)等。
平台珩磨在发动机缸孔加工中的应用
一汽轿车股份有限公司第二发动机厂的发动机最初从美国引进时,缸孔采用普通碳化硅珩磨条一次珩磨,要求表面粗糙度为Ra0.5~0.88,缸体根据直径尺寸大小分五级装配。由于珩磨余量大、珩磨时间比较长,且缸孔的几何形状差,已不能满足后继生产的要求。为此,我们先后进行了两次工艺改造。
1996年进行的工艺改进采用两次珩磨,粗珩采用金刚石珩磨条,精珩采用普通碳化硅珩磨条,提高了珩磨的效率,表面质量控制接近于平台珩磨的标准。为彻底解决发动机机油消耗偏高的问题,结合一汽技术中心在保时捷公司的咨询结果,我们于1998年又做了进一步的工艺改进,从德国Nagel公司购进缸体珩磨自动线,采用三次珩磨加工缸孔,实现了真正意义上的平台网纹珩磨。

1、发动机缸孔加工的工艺过程
发动机缸孔的镗孔分为粗镗、半精镗和精镗;珩磨分为粗珩、精珩及平台珩,精珩和平台珩磨是在同一工位通过两次涨刀实现的。各步加工的尺寸及表面质量要求如下:
●镗缸孔
粗镗缸孔:φ5.725~86.106mm
半精镗缸孔:φ6.994~87.096mm
精镗缸孔:φ7.41~87.45mm
●珩磨缸孔
粗珩缸孔:φ7.465~87.475mm
精珩及平台珩:φ7.495~87.505mm
缸孔圆柱度:0.008mm
缸孔网纹在水平方向夹角:35°~45°
●表面质量参数
波度Wt≤2mm
平均峰谷高度Rz=4~8mm
核心剖面深度Rk=0.6~1.4mm
缩减的尖峰高度Rvk≤0.5mm
缩减的沟痕深度Rpk=1.5~3.5mm
尖峰材料比率Mr1=2~10%
沟痕材料比率Mr2=65~85%

2、发动机缸孔平台珩磨工艺
一汽轿车股份有限公司于1998年2月从德国Nagel公司引进了一条缸体珩磨自动线,用于发动机缸孔和主轴孔的珩磨加工,其加工工艺过程及特点如下:
(1)机床组成及工艺:
该自动线由16个工位组成,包括两个上下料工位、5个珩磨工位、1个后置测量工位、1个翻转倾倒冷却液工位和7个空工位。
缸孔的平台珩磨是通过3次珩磨来实现的,即粗珩磨、精珩磨和平台珩磨,缸体整个的珩磨过程如下:
精镗完的缸体由动力摩擦滚道自动输送到上料工位1,该工位安装有自动判别缸体类别的传感器,机床能根据传感器发出的信号自动调整加工程序。
机床在工位3和工位5进行缸孔的粗珩磨加工(3工位珩磨1、3缸,5工位珩磨2、4缸),粗珩磨金刚石珩磨条的进给由步进电机控制,珩磨条的进给速度及珩磨尺寸、珩磨头的行程等均由预先设定的程序进行控制,对以上数值的调整只需更改程序中的相应参数即可完成。机床在珩磨过程中可根据测量结果自动修正缸孔的形状误差。
工位7和工位9进行缸孔的半精珩和精珩(平台珩)加工,缸孔的半精珩磨和精珩磨是在同一工位经过两次涨刀来实现的,消除了重复定位误差,可获得更为理想的表面网纹结构。由于在缸孔的珩磨过程中采用了在线测量技术,边珩磨加工边测量,机床能够根据测量结果自动修正缸孔形状,保证缸孔加工精度。缸孔圆柱度达到0.005mm,直径尺寸精度达到±0.005mm,缸孔尺寸只有一个级别,不再进行分组。
11工位进行主轴孔的珩磨加工,主轴孔珩磨采用世界上比较先进的卧式铰珩工艺,在一个单行程加工中完成5个主轴承孔的珩磨,尺寸变化一般在3~4mm以内。
12工位进行主轴孔的后置测量,并能对测量结果进行统计分析,依据分析结果发出相应的警示信号。
15工位工件翻转270°倾倒水套孔及螺栓孔内的冷却液,16工位下料,完成整个珩磨加工。
缸孔珩磨和主轴孔珩磨都采用金刚石珩磨条,缸孔珩磨条一般寿命可加工10000件以上,主轴孔珩磨条寿命能达到10万件以上,珩磨条更换频次少,保证了加工的一致性,同时辅助时间也相对减少。
该珩磨机珩磨液具有温度相对控制装置,保证珩磨液温度比环境温度低2~6℃,减少了珩磨温度对工件造成的影响,有利于提高主轴孔和缸孔的加工精度。同时,由于机床采用全封闭结构,减少了由于珩磨液雾化和蒸发造成的损失,也减少了对环境的污染。

3、平台珩磨工艺中的几个关键问题
(1)表面质量参数的确定
缸孔的表面质量参数通常是在产品设计过程中由设计人员给出的,过去由于一般仅采用表面粗糙度Ra评价表面质量,产品对工艺的要求比较少。采用平台珩磨标准后,表面参数和评价标准将决定工艺方法,包括设备结构、珩磨条类型、检测设备等,如:德国大众公司采用Rk系列参数,英国Perkins公司采用R3z、Skew等参数,并对检测设备有明确的要求。因此可以讲,缸孔平台表面质量参数的确定是产品与工艺相结合的过程,尤其是对老产品的改造。一汽轿车股份有限公司第二发动机厂发动机缸孔平台网纹的表面参数就是在工艺试验(德国Nagel公司完成)基础上,结合保时捷公司的咨询结果及道路试验确定的。
(2)两次珩磨还是三次珩磨
过去一般认为两次珩磨和三次珩磨均可实现平台网纹的表面结构。随着工艺水平的提高,现在一般认为只有采用三次珩磨,且精珩磨与平台珩磨在同一工位上一次定位完成,才能获得精确的平台网纹表面结构。
三次珩磨过程中,粗珩磨去除的余量为30~50mm,精珩磨去除的余量为20~30mm,平台珩磨去除的余量为3~5mm。粗珩磨时主要去除余量,消除精镗加工的刀痕,为珩磨网纹创造条件;精珩磨形成网纹深沟;平台珩磨珩出平台。
由于平台珩磨的余量很小,加工行程次数只有5~8次,如果精珩磨和平台珩磨采用独立主轴加工,在珩磨头没有消除重复定位误差以前就已经完成平台珩磨,产生假平台。精珩磨与平台珩磨一次定位完成,即在一个主轴上实现精珩磨和平台珩磨。精珩磨涨刀时平台珩磨不涨刀,精珩磨完成退刀时,平台珩磨涨刀加工,这样可消除重复定位误差的影响。
(3)珩磨过程中的主轴旋转方向
使用金刚石珩磨条时,为了避免因珩磨条对孔壁的高压而产生的金属碎片的影响,应使每次加工的旋转方向相反,如:精镗右旋,粗珩左旋;精珩右旋,平台珩磨左旋。
(4)珩磨过程中的跟踪测量及锥度补偿
在珩磨过程中,控制程序可根据跟踪检测结果,通过调整砂条的超程量对缸孔的锥度实现补偿,最后还可以通过局部短行程珩磨进行锥度修正。
(5)珩磨条的选定及初始修整
从珩磨效率和珩磨条寿命的角度考虑,一般粗珩磨和精珩磨采用金刚石珩磨条,但平台珩磨必须采用碳化硅珩磨条,以避免金刚石珩磨条切削形成的鳞刺。这一点在Perkins的技术标准中有明确的要求。采用金刚石砂条时,粘接完毕后使用前应装在珩磨头上进行线外修整,以适应缸孔的形状。

4、平台珩磨与一般珩磨加工质量的比较
平台珩磨的表面结构与普通珩磨的表面结构相比具有明显的改善,形成了既有高支承率的平台,又有储油的深沟结构。
设备精度的提高和工艺的改进使缸孔的尺寸精度和几何精度得到明显改善,缸孔圆柱度达到0.005mm,直径尺寸精度达到±0.005mm。缸孔尺寸可控制在一个级别内,不再进行分组。
在发动机上的实际应用效果
经过台架及整车道路试验,采用平台网纹珩磨工艺的发动机与未采用该工艺的发动机相比,在以下几方面取得了很大的进步:

1、提高了气缸体、活塞及活塞环的使用寿命。
平台网纹珩磨工艺增强了汽缸壁的储油和承载能力,又提高了缸孔的形状精度,从而改善了汽缸壁与活塞、活塞环之间的润滑条件,使汽缸壁、活塞、活塞环的磨损速度明显减慢,大大提高了气缸体、活塞及活塞环的使用寿命。缸孔磨损值小于每万千米1mm,已经处于国际先进水平。

2、降低了发动机的机油耗量。
由于缸孔几何形状精度及表面质量的提高,再加上活塞结构的改进,使发动机机油耗量与燃油消耗量的比值由0.25%~0.50%降到0.15%。

3、发动机额定功率提高3.4%,最大扭矩提高2.9%。
综上所述,缸孔平台网纹珩磨工艺作为目前世界上最先进的缸孔(套)珩磨工艺之一,其应用对提高发动机使用寿命乃至经济性、动力性有着极其重要的意义,特别是对解决发动机早磨和机油耗量高等问题起着至关重要的作用,其工艺发展和普及应是必然的趋势。平台网纹珩磨工艺的评价标准比较复杂,同时,工艺的实现是一个产品与工艺相结合的过程,是发动机设计、制造者与机床生产厂商的结合。缸孔(套)平台网纹珩磨工艺的关键在于表面平台与深沟的控制,从工艺上讲,只有三次珩磨,且精珩磨与平台珩磨在同一工位上一次定位完成,才能实现真正意义上的平台网纹珩磨。


该用户从未签到

发表于 13-4-2010 12:17:09 | 显示全部楼层
文章很好,怎么没有图啊?
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 21-4-2010 08:36:51 | 显示全部楼层
怎么还没有配上图呢?要是图文并茂该多好啊?谢谢分享!
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 18-6-2010 14:19:09 | 显示全部楼层
jiangde feichang shenke
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 29-7-2010 23:01:01 | 显示全部楼层
上述评价内容中,表面粗糙度是非常重要的项目,对于缸孔平台参数一般按照ISO 13565(DIN 4776)标准规定的5项粗糙度指标来评价,分别为Rk、Rpk、Rvk、Mr1和Mr2
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
这个德系规定的,日本这边呢没有这么多参数 只是在试作阶段才会检证这些参数,量产的话一般不会检证这么多参数的
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 16-12-2011 10:35:58 | 显示全部楼层
这是篇难得的好文章 对于我们发动机行业者来说是很宝贵的资料
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 12-1-2012 16:56:54 | 显示全部楼层
珩磨加工确实是高精度工艺,但其检测方法却有些落后。大部分靠工人经验,没有整体检测设备。
国外已经针对此开发了先进的检测手段,不仅用于研制阶段,更多用于在线检测。比如使用光学扫描法代替贴膜法,速度快,操作简单,能大大提高生产效率。国内还在讨论如何提高加工效率,其实高效的检测手段也是必不可少的。
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 18-5-2012 10:11:18 | 显示全部楼层
现在的检测很方便和快捷了,只要十几秒九可以出结果的..
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 8-10-2012 20:56:08 | 显示全部楼层
挺好的~虽然少了些许配图。对于珩磨技术的了解还是达到了了一定的层度
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 11-3-2013 11:07:13 | 显示全部楼层
非常专业,学习
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 11-3-2013 13:20:35 | 显示全部楼层
一篇值得三究的好文章
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 11-3-2013 13:21:37 | 显示全部楼层
  向有分享的研究者致敬。
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 11-3-2013 13:22:28 | 显示全部楼层
  学习就是进步
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 11-3-2013 13:23:17 | 显示全部楼层
努力就会提高
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 11-3-2013 13:24:24 | 显示全部楼层
  孜孜不倦,上下求索。
回复 支持 反对

使用道具 举报

快速发帖

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

GMT+8, 3-8-2025 09:16 , Processed in 0.342055 second(s), 45 queries .

Powered by Discuz! X3.5

© 2001-2013 Comsenz Inc.