中国汽车工程师之家--聚集了汽车行业80%专业人士 

论坛口号:知无不言,言无不尽!QQ:542334618 

本站手机访问:直接在浏览器中输入本站域名即可 

  • 4072查看
  • 8回复

求助~专业英语翻译~

[复制链接]


该用户从未签到

发表于 20-4-2010 20:42:32 | 显示全部楼层 |阅读模式

汽车零部件采购、销售通信录       填写你的培训需求,我们帮你找      招募汽车专业培训老师


有哪位前辈可以帮忙翻译一下~不胜感激

Vehicle Axis Systemes
Introduction

At any given instant of time ,a vehicle subjected to a single force acting at some location and in some direction . This so-called external or applied force maintains the velocity or causes an acceleration of the vehicle .This force is made up of tire,aerodynamic,and gravitational force components. These different components are governed by different physical laws and it is not convenient to deal with this single force.Furthermore ,there separate tire ,aerodynamic ,and gravitational force components act at different locations and in different directions relative to the vehicle chassis.

In order to calculate accelerations and velocities in directions of interest(such as fore and aft for performance or left and right for turning behavior),it is necessary to define axis systems to which the accelerations and velocities and the forces/torques causing them can be referred. Since we live in a three-dimensional world,three reference axes at right angles (90°)to each other which meet at a common point(the axis system”origin”)are the basic and sufficient requirements for these axis systems.

The common axis systems used in vehicle dynamics work in the United States have been defined by the Society of Automotive Engineers(SAE) and appear in Ref.1. Their common use facilitates communication and uniformity of the technical literature .In order to properly relate changes in the motions of the vehicle and its components ,as well as describe the vehicle path relative to the earth ,there are two basic SAE vehicle axis systems.Two additional axis systems are used as required for the presentation of tire force and moment data(described in chapter 2)and aero data(described in Chapter 3).There special axis systems can later be transferred to the vehicle axis system.

Two Types  of Axis Systems

The two basic axis systems are described in the following sections.

Earth-Fixed Axis System

This system(the capital letter system) is fixed to the ground and the letters X-Y-Z are used to denote the three principal directions;X and Y are horizontal and at right angles to each cther ,Z is vertical downward.This earth-referenced axis system is used in this text only when it is necessary to reference some aspect of the vehicle motion to a fixed point or direction .In problems related to vehicle motion relative to the ground ,it is common to start off with the origin of the vehicle axis system(described below),coinciding with the earth axis system origin.Frequently ,the axes of the two systems will also coincide initially .The calculation or measurements will then indicate the relative motions of the two axis systems. However ,it must be emphasized that the earth axes location and orientation are independent of the vehicle and are arbitrarily determined at the convenience of the user.

vehicle Axis system

The Vehicle Axis System has its origin in aircraft usage.A review of the reasons for its adoption for automotive studies and the assumptions on which it is based are given below.

The first use of this axis system was by L.Segel in his classic paper,“Theoretical Pre—diction and Experimemal Substantiation of the Response of the Automobile to Steering Control"(Ref.144).The principal reason for its automotive as well as aircraft use is that it is fixed in the Vehicle and moves with it.The inertia properties(moments and proudcts of inertia) remain constant relative to this set of axes but would be variable if referenced to a set of axes fixed on the ground,for example.Not only would they be variable but they would lose in physicaI meaning to the engineer as the Vehicle maneuVered.

Some confusion may arise because this axis system is referred to in different ways. Quite commonly it is caIled a“Moving Axis System”because it moves with the vehicle;it is also labeled as ‘Body axes’it is fixed in the vehicle;frequently it is referred to as the “Stability Axes”or “Directional Control Axis System.” The point to remember is that it is fixed in the vehicle and the inertia properties relative to it are taken constant.

The next questions is: Where is the origin of this axis system located and how are the axes oriented in the vehicle ?This is discussed at length in Ref.111,from which the following is abstracted. The automobile is considered as a two-mass system. The unsprung mass is taken as a rigid frame (with steerable wheels) and the sprung mass is considered as a rigid body .These two masses are “hinged”together at the roll axis and one variable ,roll angle ,specifies the relationship between the two masses .Figure 4.1 (from Ref.111)shows these respective masses and how they are brought together in the complete car.Axes Is and Iu come together in the complete car as i;similarly Js and Ju converge to J,and Ks and Ku to K.
   

Axes I ,J,and K are relabeled as x,y and z (lower case)in the SAE system shown in Figure 4.2 .The system is orthogonal (the axes are at 90° to each other )and is right-handed (i.e.,a positive rotation about x rotates y into z ,a positive rotation about y rotates z into x,etc.).The x-axis is horizontal and positive forward in the direction of motion when the vehicle is traveling in a straight line on a level road (road is assumed flat).The x-axis lies in the longitudinal plane of symmetry(vehicle assumed to have left-right symmetry).The y-axis point to the driver’s right ,is horizontal and 90°to the x-axis .The z-axis is perpendicular to the other two ,is vertical and positive downward.

The origin of the vehicle axis syatem(x,y,z)is the same for the sprung and unsprung masses,as indicated in Figure 4.1 It is located at the intersection of the vehicle roll axis (shown as a line sloping downward toward the front in Figure 4.1)and a line perpendicular to the road through the CG of the total vehicle ,for a zero roll angle of the sprung mass .

It is usually assumed that the sprung mass rolls about the horizontal x-axis,rather than about the actual roll axis .(Equations have been developed for an inclined roll axis –see Ref.111-but are infrequently used.)Also the origin of the system may,for particular purposes,be located elsewhere.

It is generally assumed that the”principal axes of the rolling mass are parallel to the body axes and that the center of gravty of the non-rolling mass is on the x axis”(Ref.144).

Tire deflections are neglected and the plane of the wheel centers(equal-sized wheels front and rear )remains parallel to the ground.

4.2 vehiele Motions

In vehicle dynamic studies of vehicle motion,it is customary for the user to fix certain operating variables.Thus a value can be assiglled to the forward velocity and the tractiVe/brakingg force or longitudinal acceleration/deceleration.The motion of the unsprung mass can then be studied as perturbation from the steady velocity condition;likewise the roll of the sprung mass can be studied in relation to the unsprung mass.These per-turbations can be initiated by a control action or other disturbance such as a willd gust.For Vehicle stabiIity and control investigations the perturbation Velocities of interest are
     Forward velocity      u
     Lateral velocity      v
     Yawing   velocity     r
     Rolling   velocity    p
For stability and control investigation ,the pitch and vertical perturbations (q and w)are neglected. The so-called lateral-directional equations are in terms of v,r and p.

These perturbation velocity(linear and angular)components about the axes fixed in the vehicle must be measured relative to some reference.In aircraft practice it is customary to think in terms of another orthogonal axis system which follows me aircraft through its maneuvers and which at any given instance of time is coincident witll the aircraft system but momentarily fixed in space.The perturbation velocities are measured relative to it.one might say that the reference aXes are continually chasing the aircraft but can conveniently be momentarily stationary when the vehicle velocities are to be measured.This is,of course,equivalent to saying that the perturbation velocities are measured relative to
inertial space.

If actual path along the ground is desired,the Vehicle Axis System is referenced to the Earth-Fixed Axis System as me initial condition.The various acceleration components (rates of change of the Velocity component perturbations)are defined below along with the angular relationships associated with path analysis(see Figure 4.3).
1.Longtudinal Acceleration is the component of the Vector acceleration of a point in the Vehicle in the x—direction.
2.Side Acceleration is the component of the Vector acceleration of a point in the Vehicle in the y-direction.
3.Normal Acceeleration is the component Of me Vector acceleration of a point in the vehicle in the z-direction.
4.LateraI Acceleration is th component of the vector acceleration of a point in the Vehicle perpendicular to the vehicle x-axis and parallel to the road plane.

In steady-state condition,lateral acceleration is equal to the product of centripetal times the cosine of the vehicle's sideslip angle.since in most test condition the sideslip angle is small ,for practical purposes the lateral acceleration can be considered equal centripetal acceleration.
5.Centripetal Acceleration is the component of the vector acceleration of a point in the vehicle perpendicular to the path of that parallel to the road plane.
6.Heading Angle (ψ) is the angle between the trace on the X-Y plane of the vehicle x-axis and the X-axis of the earth-fixed axis system(see Figure 4.3)
7.Sideslip Angle (Attitude Angle,β)is the angle between traces on the X-Y plane of the vehicle x-axis and the vehicle velocity vector at some specified point in the vehicle .Sideslip angle is angle is shown in Figure 4.3 as a negative angle.
8.Course Angle (v)is the angle between the trace of the vehicle vector in the X-Y plane and X-axis of the earth-fixed axis system .A positive course angle is shown in Figure 4.3
Course angle is the sum of heading angle and sideslip angle(v=ψ+β)
图片4.3
9.Vehicle Roll Angle is the angle between the vehicle y-axis and ground plane .
10.Vehicle Pitch Angle is the angle between the vehicle x-axis and the ground plane .
The force/moment components are defined below.
FORCES—The external force acting on the automobile can be summed into one force vector having the following components ;
11.Longitudinal Force(Fx)is the component of the force vector in the x-direction .
12.        Side Force (Fy)is the component of the force vector in the y-direction.
13.Normal Force (Fz)is the component of the force vector in the z-direction.
MOMENTS—The external moments acting on the automobile can be summed into one moment vector having the following components:
14.Rolling Moment (Mx) is the component of the moment vector tenging to rotate the vehicle about the x-axis , positive clockwise when looking in the positive direction of the x-axis.
15.Pitch Moment (My) is the component of the moment vector tenging to rotate the vehicle about the y-axis , positive clockwise when looking in the positive direction of the y-axis.
16.Yawing Moment(Mz) is the component of the moment vector tenging to rotate the vehicle about the z-axis , positive clockwise when looking in the positive direction of the z-axis.

4.3 Some Thoughts On Sign Conventions
In the SAE Tire Axis System (see Figure 2.33), the silp angle is defined as the angle between the wheel plane and the direction of wheel travel. In the system , if the wheel is moving forward to the left (as in a right-hand turn ),the slip is negative but the lateral force is quadant .This negative relation between lateral force and slip angle can be confusing in the kinematic relationship between slip and steer angles .

Without proposing a change in the well-established SAE system,this note aims at clarifying some of the issues associated with this sign convention.In the SAE system,slip angle are assumed to be the result of a lateral velocity ,v,in the presence of a forward velocity,u.   For exanple , the rear tire slip angle is ?????????(有上标)where Vr is the local lateral velocity.If Vr and u are positive ,the “slip”is to the right , αr is positive ,and lateral force is to the left (negative),corresponding to a left-hand turn . But a slip angle can also  be created by steering the wheel, or in aeronautical terminology ,turning the wheel to a yaw angle . In fact, in the SAE system ,a  positive steer angle ,δ,produces a positive lateral force .The wheel has been yawed to the right.
Of the two ways of creating an out-of-wheel-plane velocity conlponent,me use of yaw
angle has considerable logic for presenting data from tire tests.We have noted in
Chapter 2,that the term“slip angle”is a questionable one since the wheelis not slipping laterally but rather is operating in a yawed—rolling condition.Defiiling“slip angle’’in erms of a latheral/forward velocity ratio further perpetuates the notion that the tire is iterally sliding sideways as a whole.In actual fact,because of the tire rolling motion,the print has areas composed of adhesion in the front and sliding in the rear.  On tire  testers,lateral slip velocity is never used to create the out-of-plane velocity:rather the wheel plane is steered(or yawed)relative to the belt velocity.20
If the“slip allgle”convention were relaced by yaw angle,the following would occur:
  1.A positiVe yaw angle would line up with a positive rotation in the SAE System
  i.e,a clockwise rotation looking forward.It would be compatible with the defhition of positiVe steer angle.
    2.In a RH turn,the yaw angles at the wheels would normally be positive as well as the lateral tire forces.The cornering curves would plot in the first quadrant.
  3.The aligning torque data would plot in the fourth quadrant and the initial slope of the curve would be negatiVe which is proper for a“stability’’situation.That is,an increase in yaw angle would giVe a negatiVe(or restoring)moment(the tire’s  self-aligning torque).

So much for the tire itself,consider the motions of the vehicle and its interaction with the tires.In the SAE vehicle-fixed axis system,a lateral velocity to the right is positive—along the positive y aXis.In a RH turn the vehicle experiences a lateral velocitlI,to the left or negatiVe in this axis system at speeds above the“tangent speed" This aligns with what one senses in the vehicle.Furthermore,in a RH turn the yawing velocity of the vehicle is clockwise and positive—again aligning with one’s senses.The lateral velociy and the yawlng Velocity create lateral velocity components at the front and rear wheels.These velocities,together with the forward velocity,create yaw angle changes at the wheels which in turn account for the vehicle lateral and yaw damping.Thus a vehicle’s lateral velocity to the 1eft(in a right_hand turn)gives rise to lateral force changes to the right,i.e.,the Vehicle damping—in-side slip.A positiVe yawing velocity results in a negative yawing moment,i.e.,the vehicle damping-in—yaw.Without these damping effects a control or disturbance input would result in a continuously accelerated motion。which we know is not the case.

One final thought :SAE J1594 ,”Vehicle Aerodynamics Terminology,”use an axis system which is similar to that of the tire axis system ,except that the out-of-plane velocity vector is defined by a yaw angle ,positive for clockwise rotation .This aligns with aircraft wind tunnel practice .The aerodynamic force and moments all follow aircraft practice and the data falls into the proper quadrant .Damping effects appear with proper signs .

For those who find the signs and piots associated with tire data difficult ,slip angle can be replaced by yaw angles of opposite sign .

4.4 Symbol Conventions in this BOok

In general,we have adopted the SAE Vellicle and Tire Axis Systems(of Ref.1)and their associated symbols—thus X,Y,Z for the Earth一FiXed axes and x,y,z for the Vehicle and Tire Axis.The force(F)and momem(M)components of the Vehicle and Tire Axes are defined by subscripts referencing the particular axis.To distinguish between the vehicle and Tire F/M components we have generally used upper case for the Vehicle subscripts and lower case for tire subscrits,thus Fx,Mx….refer to Vehicle components and Fx,Mx,…。refer to tire components.This is an arbitrary convention.In a book with so many authors and sources,it has been impossible to achieve a uniformity of sysmbol throughout and one must depend on context•In the partlcuIar case of lateral acceleration,we use Ay=ay/g,which again is arbitrary.


该用户从未签到

发表于 21-4-2010 09:03:33 | 显示全部楼层
有关于 轮胎和制动力的啊 太多了这也
回复 支持 反对

使用道具 举报



该用户从未签到

 楼主| 发表于 21-4-2010 09:12:25 | 显示全部楼层
坐标轴~语句有点复杂~看不懂
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 21-4-2010 10:59:11 | 显示全部楼层
Vehicle Axis Systemes
Introduction
汽车坐标系介绍
At any given instant of time ,a vehicle subjected to a single force acting at some location and in some direction . This so-called external or applied force maintains the velocity or causes an acceleration of the vehicle .This force is made up of tire,aerodynamic,and gravitational force components. These different components are governed by different physical laws and it is not convenient to deal with this single force.Furthermore ,there separate tire ,aerodynamic ,and gravitational force components act at different locations and in different directions relative to the vehicle chassis.
在任意时刻,汽车运行在某一位置向某一方向行驶必将受到一个侧向力的作用。这就是所说的外力作用或使车辆受到一种外力左右使其产生车速,或是使汽车产生加速运行的原因。该作用力由轮胎,空气动力以及重力构成。这些不同的受力受控于相应法规要求,难以通过单一侧向力进行分析。进而对于底盘来说汽车行驶在不同的运行位置和不同的方向时,会受到来自各自的作用力,包括轮胎作用力,空气动力作用以及重力作用。
In order to calculate accelerations and velocities in directions of interest(such as fore and aft for performance or left and right for turning behavior),it is necessary to define axis systems to which the accelerations and velocities and the forces/torques causing them can be referred. Since we live in a three-dimensional world,three reference axes at right angles (90°)to each other which meet at a common point(the axis system”origin”)are the basic and sufficient requirements for these axis systems.
考虑到需要计算汽车运行在不同方向时的汽车加速度及车速参数(例如需要了解汽车在转弯过程中前后左右不同方向的性能参数),从而有必要定义汽车坐标系的概念。便于在测算加速度,车速以及功率/扭矩性能参数时引用该概念。我们生活在三位的立体世界中,三个参考坐标轴两两间隔保持90度夹角,并共享同一坐标原点(即坐标系原点)。该坐标系原点作为3个坐标轴建立的基础并满足各自不同要求。


由于工作原因我只能快速翻译2段,时间不够,如需了解概况我会抽时间再补充
回复 支持 反对

使用道具 举报



该用户从未签到

 楼主| 发表于 21-4-2010 19:12:56 | 显示全部楼层
非常感谢~这对我帮助非常大~~~
劳烦您再帮帮忙翻译剩下的那一些~
回复 支持 反对

使用道具 举报



该用户从未签到

 楼主| 发表于 22-4-2010 14:46:57 | 显示全部楼层
...............
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 25-4-2010 17:32:03 | 显示全部楼层
呵呵
来了
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 26-4-2010 11:27:54 | 显示全部楼层
快速翻译的,自己改吧。


车辆轴系统公司
介绍

在任何特定时间即时,一些位置在车辆受到单一作用力,在某些方向。这种所谓的外部或作用力保持速度或会导致车辆的加速。这支部队是由轮胎,空气动力,重力分力。这些不同的组件是由不同的物理规律,是不便于处理这个单一force.Furthermore,有单独的轮胎,空气动力学,以及引力元件在不同地点的行为,并在不同的方向相对于车辆底盘。

为了计算加速度,转向左,右行为的速度在这种利益的方向(向前或向后的性能或),有必要界定轴系统,它的加速度和速度和力量/力矩使他们可以转介。由于我们生活在一个世界立体,3 °)引用(90轴成直角彼此的)符合在一个共同的点(轴系统“起源”的要求,这些轴系统的基本的和足够的。

共同轴系统用于车辆动力学国家工作在美国被定义的)国际汽车工程师学会(SAE和出现在Ref.1。他们的共同使用便利的沟通和统一的技术文献。为了正确与成分的变化及其在运动的车辆,以及车辆路径描述相对于地球,有两个基本SAE的车辆轴systems.Two轴系统是用来作为额外的)要求3演示轮胎力和力矩的数据(详见第2章)和航空数据(详见第三章。轴系统有特殊可后来被转移到车辆轴系统。

两轴类型系统

两轴系统的基本描述在以下各节。

地球固定轴系统

本系统(大写字母系统)是固定在地面和字母XYZ的,用以反映的三个主要方向; X和Y是横向和成直角每个cther,Z是垂直downward.This地球参考坐标系的系统中使用的文字只有在有必要参考一些运动方面的车辆为固定点或方向。议案有关问题在车辆相对在地上,是很常见的开始)关闭低于原产地的车辆轴系统(描述,系统正好与地球轴origin.Frequently,两个系统的轴线重合的意志也开始。计算或测量,然后将表明两轴系统的相对运动的。但是,必须强调的是,地球轴的位置和方向的车辆和独立的决定是任意用户在方便的。

车辆轴系统

的车辆轴系统有其原产地在飞机原因usage.A审查其通过对汽车的研究基础,是假设它是如下。

轴系统的首次使用,这是他的经典论文由L.谢格尔中,“理论预文辞和Experimemal汽车充实了的响应,以转向控制“(Ref.144)。飞机使用其主要的原因是汽车,以及它是固定在汽车和惯性转动惯量特性后援(时刻及产品展示)相对保持不变的,但这个轴设置如果将变量引用一个轴固定在地面设置的example.Not,因为只有他们会是可变的,但他们会在physicaI工程师失去意义,作为机动车辆。

可能会出现一些混乱,因为这被称为轴系统以不同的方式。很常见的是caIled一个“移动轴系统”,因为它移动的车辆,更是标示为身体axes'it是固定在车辆,它常常被称为轴为“稳定”或“定向控制轴系统。”意思要记住的是,它是固定在汽车的惯性和性能相对于它采取常数。

接下来的问题是:哪里是位于这个制度的起源是怎样的轴与轴导向在车上?这是在Ref.111详细讨论,以下是从抽象的。的汽车被认为是一个双质量系统。簧下质量为框架作为一个硬性(带可转向轮)和簧载质量被视为刚体。这两个群众是“铰链”的角度一起在辊轴和一个变量,滚,规定了人民群众的关系两者之间。图4.1(从Ref.111)分别显示了这些群众,他们是如何聚集了完整的car.Axes和Iu来了,我是一起汽车作为完整的;同样js和鞠收敛到J和K报表和Ku到K
   

轴我,J和K为重新标记为x,y和z (小写)在SAE系统如图4.2所示。系统是正交(轴°,在90至对方),是右撇子(即积极的旋转旋转Ÿ约X到Z的一个积极的旋转约Ÿ旋转ž到X,等等)。X轴是水平的,积极的假设是前进的方向运动,当车辆行驶在一条直线一级公路(道路平坦)。X轴位于在对称纵向平面(车辆假设有左右对称)。Y轴指向驱动程序的权利,是水平和90 °,X轴。z轴垂直于其他两个,是垂直和积极的下降。

对于起源车辆轴系统的研究与开发(的x,y,z)是相同的跳跃和非悬挂质量,如在图4.1所示是位于坡线相交,作为显示车辆辊(轴向下对4.1前图)和垂直线的道路,通过车辆的总重心,一个滚动的簧载质量零角度。

通常是假设的轴心,而簧载质量对辊横向的X比对实际辊轴。(方程组已制定了一个斜辊轴见Ref.111,但很少使用。)也是,起源,系统可为特定目的而设在其他地方。

这是一般认为,滚动群众的“主要轴线平行于轴,而身体质量中心滚动gravty非轴在X”(Ref.144)。

轮胎变形是忽视,车轮中心平面(同等大小的车轮前部和后部)仍然同地面平行。

4.2 vehiele运动

汽车运动在车辆的动态研究,这是习惯,供用户解决某些经营variables.Thus 1和值可以assiglled的前进速度的牵引/ brakingg武力或纵向加速度/簧下质量deceleration.The的议案进行研究可以作为条件扰动的稳定速度,同样的质量推出的兴起可mass.These研究有关的簧下每turbations可以启动调查的扰动速度的利益是由一个控制行动或其他干扰,如汽车stabiIity和远志gust.For控制
前进速度ü
横向速度v
偏航速度ṛ
轧制速度p
稳定和控制调查,间距和垂直扰动(Q和W)被忽视。所谓横向方向的方程计算,在V,R和山口

这些扰动速度(线性和角度)汽车零部件有关的固定资产必须测量轴相对于一些参考。飞机在实践中是习惯的思考和计算,另一正交轴系统,通过如下我飞机的演习在任何特定情况下的时间是同步witll飞机系统,但暂时固定在space.The扰动速度是衡量相对于it.one可能会说,参考轴不断追逐的飞机,但可以随时方便地固定在车辆速度要measured.This,当然,相等于说,扰动速度是衡量相对于
惯性空间。

若沿地面的实际路径是不完善的地方,车辆轴系统是参照地球固定轴系统像我最初称为条件不同加速组件(组件扰动率变化的速度)定义如下的关系以及相关的角路径分析(见图4.3)。
1.Longtudinal加速车辆组成部分,是一个加速的向量点在x方向。
2.Side加速车辆组成部分,是一个加速的向量点在在y方向。
3.Normal Acceeleration是我点加速度矢量组件中的一个。车在z方向
4.LateraI加速度是车辆次组件垂直于车辆矢量加速度1点在x轴和平面平行的道路。

在稳态条件下,横向加速度等于时代的产物的向心力条件余弦车辆的侧滑angle.since在大多数测试侧滑角小,实际目的为横向加速度可视为等于向心加速度。
5.Centripetal加速度是平面的一个组成部分,加速点的向量垂直于道路的车辆路径该平行。
6.Heading角(ψ)是跟踪角之间的对车辆的XY平面的X轴和X轴在地球系统固定轴(见图4.3)
7.Sideslip角(姿态角,β)是车辆之间的角度对痕迹在XY平面X轴和点车辆的车辆在一些指定的速度矢量。侧滑角为角为4.3如图所示为负角。
8.Course角(V)是平面之间的角度在XY跟踪车辆向量与X轴在地球系统固定轴。一个积极的航向角如图4.3
航向角是)之和的航向角和侧滑角(5 =ψ+β
图片4.3
9.Vehicle辊之间的角度是角度车辆的Y轴和地平面。
10.Vehicle俯仰角是车辆之间的角度的X轴和地平面。
部队/力矩组件定义如下。
部队,迫使外部作用于汽车,可以归纳1力向量具有下列内容;
11.Longitudinal部队(FX)的组成部分,是方向的X部队的载体中。
12。侧向力(新台币千元)是y的方向组成部分,在该部队载体。
13。正常组(Fz的)组成部分的方向是Z轴矢量的力量在。
矩,外部的时刻:作用于汽车零部件可以归结为以下之一矩向量具有
14.Rolling矩器(MX)是组件目前向量tenging旋转轴车辆有关的x -,积极顺时针时。看着轴正方向的X
15.Pitch矩(我的)是y分量的矢量tenging目前约旋转车轴,顺时针时正。看着轴正方向的Y
16.Yawing矩(锰锌)是轴组件的力矩矢量tenging到z旋转车辆有关,积极顺时针方向时,在积极寻找的Z轴。

4.3注册公约的几点思考
轮胎轴系统的SAE(见图2.33),旅行的silp角度定义为车轮轮面之间的角度和方向。在该系统中,如果车轮正在向前推进到左侧(如在右边转),滑为负,但侧向力quadant。负,这偏角之间的关系侧向力,可以引导混乱的滑移和运动之间的关系角度。

没有提出一个系统改变既定的汽车工程师协会,这说明角的目的是澄清支路系统,汽车工程师协会的一些问题与此相关的标志convention.In的假定的结果是一个横向速度,存在五,在一前进速度,美国对湘南农业洪涝易损,后方轮胎偏角是?????????(有上标)在VR是当地的横向velocity.If VR和u是积极的,“滑”是在右边,王晓敏,是积极的,侧向力是向左(负),相当于左手转。但偏角术语也可以创造转向车轮,或在航空,车轮转动到一个偏航角。事实上,在SAE的制度,积极引导角,δ,产生了积极的侧向力。轮子已经yawed的权利。
方式建立两个一个彻头彻尾的轮面速度conlponent,我使用偏航
角的轮胎tests.We相当逻辑从数据中注意到提交
第2章,将“偏角”是一个横向滑动的问题之一,因为没有惠利斯而是condition.Defiiling经营一yawed轧“前进的速度比滑angle''in术语:一个latheral /进一步延续的概念,即横向滑动轮胎iterally作为whole.In实际上前,由于轮胎滚动,在打印领域的粘附已组成和滑动后方测试。轮胎,侧向滑移速度是从来没有用于创建出的面速度:而是轮子的飞机是指导(或yawed)相对于带velocity.20
如果“滑allgle”公约是由偏转角relaced,下面会出现:
1.A中积极偏航角将线体系的建立与SAE的积极旋转
外溢,一看forward.It顺时针旋转将积极兼容的defhition转向角度。
2.In一个相对湿度又在车轮侧滑角通常是正面的,以及轮胎的侧偏forces.The曲线将阴谋在第一象限。
三,调整扭矩数据将在第四象限情节和初始曲线的斜率是负的将是恰当的“stability''situation。也就是说,在偏航角的增加将使1负(或恢复)的时刻(轮胎的自我调整力矩)。

如此多的轮胎本身考虑车辆的运动和相互作用的权利与tires.In的SAE车辆固定轴系统,横向速度是积极的沿正Y aXis.In一个相对湿度把车辆横向velocitlI经验,以左或系统负这个轴在车辆速度高于“切线速度”此赞同一个什么感觉的vehicle.Furthermore,在相对湿度速度是顺时针转动偏航和积极的,再次senses.The调整与一个人的横向velociy和yawlng速度创造后方wheels.These速度横向速度分量在前线,并与前进速度,创造了车轮侧滑角的变化,从而占了车辆横向和偏航damping.Thus汽车的横向速度到right_hand把1eft(中)产生了横向力的变化,以正确的,即,车辆阻尼中端slip.A积极偏航偏航力矩速度以一种消极的结果,即在汽车阻尼合yaw.Without这些或干扰减震效果控制输入,会导致不断加速运动。我们知道事实并非如此。

最后一个想法:SAE的J1594,“汽车空气动力学术语”,使用一轴系统类似的系统,轮胎的轴,但该外的平面旋转速度向量定义为一顺时针偏转角,呈阳性。隧道的做法,这架飞机赞同风。气动力和力矩的所有后续飞机的做法,该数据属于正确的象限。阻尼影响的迹象出现适当的。

对于那些谁找到的标志和符号相反piots角度与轮胎相关的数据困难,偏航滑改为角度都可以。

4.4此书符号公约中

在一般来说,我们采用的SAE Vellicle和轮胎轴系统(对Ref.1)及其相关的符号,从而的X,Y,Z用于地球一固定轴和X,Y,Z三个用于汽车和轮胎Axis.The力(F)和momem(M)的轴组成部分的汽车和轮胎是指由特定axis.To标引用组件区分车辆和轮胎男/女,我们的二手车标一般都为大写,降低轮胎的案件subscrits,因此外汇,Mx的...。参照汽车零部件和外汇,Mx的,...。指轮胎components.This是一个任意convention.In一书的来源有这么多作家和,但一直未能实现统一的sysmbol各地,而必须依赖于上下文•在横向加速度partlcuIar案件中,我们使用唉=唉/克,而这又是任意的。
回复 支持 反对

使用道具 举报



该用户从未签到

发表于 26-4-2010 12:06:39 | 显示全部楼层
好像很长啊
回复 支持 反对

使用道具 举报

快速发帖

您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|手机版|小黑屋|Archiver|汽车工程师之家 ( 渝ICP备18012993号-1 )

GMT+8, 4-8-2025 17:02 , Processed in 0.356394 second(s), 41 queries .

Powered by Discuz! X3.5

© 2001-2013 Comsenz Inc.