|
汽车零部件采购、销售通信录 填写你的培训需求,我们帮你找 招募汽车专业培训老师
Internal combustion engine
The internal combustion engine is an engine in which the combustion of a fuel occurs with an oxidiser (usually air) in a combustion chamber. In an internal combustion engine the expansion of the high temperature and pressure gases, that are produced by the combustion, directly apply force to a movable component of the engine, such as the pistons or turbine blades and by moving it over a distance, generate useful mechanical energy.[1][2][3][4]
The term internal combustion engine usually refers to an engine in which combustion is intermittent, such as the more familiar four-stroke and two-stroke piston engines, along with variants, such as the Wankel rotary engine. A second class of internal combustion engines use continuous combustion: gas turbines, jet engines and most rocket engines, each of which are internal combustion engines on the same principle as previously described.[1][2][3][4]
The internal combustion engine (or ICE) is quite different from external combustion engines, such as steam or Stirling engines, in which the energy is delivered to a working fluid not consisting of, mixed with or contaminated by combustion products. Working fluids can be air, hot water, pressurised water or even liquid sodium, heated in some kind of boiler by fossil fuel, wood-burning, nuclear, solar etc.
A large number of different designs for ICEs have been developed and built, with a variety of different strengths and weaknesses. While there have been and still are many stationary applications, the real strength of internal combustion engines is in mobile applications and they completely dominate as a power supply for cars, aircraft, and boats, from the smallest to the biggest. Only for hand-held power tools do they share part of the market with battery powered devices. Powered by an energy-dense fuel (nearly always liquid, derived from fossil fuels) the ICE delivers an excellent power-to-weight ratio with very few safety or other disadvantages.
Internal combustion engines are most commonly used for mobile propulsion in vehicles and portable machinery. In mobile equipment, internal combustion is advantageous since it can provide high power-to-weight ratios together with excellent fuel energy density. Generally using fossil fuel (mainly petroleum), these engines have appeared in transport in almost all vehicles (automobiles, trucks, motorcycles, boats, and in a wide variety of aircraft and locomotives).
Internal combustion engines appear in the form of gas turbines as well where a very high power is required, such as in jet aircraft, helicopters, and large ships. They are also frequently used for electric generators and by industry.
Common components
Combustion chambers
Internal combustion engines can contain any number of combustion chambers (cylinders), with numbers between one and twelve being common, though as many as 36 (Lycoming R-7755) have been used. Having more cylinders in an engine yields two potential benefits: first, the engine can have a larger displacement with smaller individual reciprocating masses, that is, the mass of each piston can be less thus making a smoother-running engine since the engine tends to vibrate as a result of the pistons moving up and down. Doubling the number of the same size cylinders will double the torque and power. The downside to having more pistons is that the engine will tend to weigh more and generate more internal friction as the greater number of pistons rub against the inside of their cylinders. This tends to decrease fuel efficiency and robs the engine of some of its power. For high-performance gasoline engines using current materials and technology—such as the engines found in modern automobiles, there seems to be a break-point around 10 or 12 cylinders after which the addition of cylinders becomes an overall detriment to performance and efficiency. Although, exceptions such as the W16 engine from Volkswagen exist.
Ignition system
The ignition system of an internal combustion engines depends on the type of engine and the fuel used. Petrol engines are typically ignited by a precisely timed spark, and diesel engines by compression heating. Historically, outside flame and hot-tube systems were used, see hot bulb engine.
Compression
Ignition occurs as the temperature of the fuel/air mixture is taken over its autoignition temperature, due to heat generated by the compression of the air during the compression stroke. The vast majority of compression ignition engines are diesels in which the fuel is mixed with the air after the air has reached ignition temperature. In this case, the timing comes from the fuel injection system. Very small model engines for which simplicity and light weight is more important than fuel costs use easily ignited fuels (a mixture of kerosene, ether, and lubricant) and adjustable compression to control ignition timing for starting and running.
Ignition Timing
For reciprocating engines, the point in the cycle at which the fuel-oxidizer mixture is ignited has a direct effect on the efficiency and output of the ICE. The thermodynamics of the idealized Carnot heat engine tells us that an ICE is most efficient if most of the burning takes place at a high temperature, resulting from compression—near top dead center. The speed of the flame front is directly affected by the compression ratio, fuel mixture temperature, and octane or cetane rating of the fuel. Leaner mixtures and lower mixture pressures burn more slowly requiring more advanced ignition timing. It is important to have combustion spread by a thermal flame front (deflagration), not by a shock wave. Combustion propagation by a shock wave is called detonation and, in engines, is also known as pinging or knocking.
So at least in gasoline-burning engines, ignition timing is largely a compromise between an earlier "advanced" spark—which gives greater efficiency with high octane fuel—and a later "retarded" spark that avoids detonation with the fuel used. For this reason, high-performance diesel automobile proponents such as, Gale Banks, believe that
There’s only so far you can go with an air-throttled engine on 91-octane gasoline. In other words, it is the fuel, gasoline, that has become the limiting factor. ... While turbocharging has been applied to both gasoline and diesel engines, only limited boost can be added to a gasoline engine before the fuel octane level again becomes a problem. With a diesel, boost pressure is essentially unlimited. It is literally possible to run as much boost as the engine will physically stand before breaking apart. Consequently, engine designers have come to realize that diesels are capable of substantially more power and torque than any comparably sized gasoline engine.[6]
Fuel systems
Animated cut through diagram of a typical fuel injector, a device used to deliver fuel to the internal combustion engine.
Fuels burn faster and more efficiently when they present a large surface area to the oxygen in air. Liquid fuels must be atomized to create a fuel-air mixture, traditionally this was done with a carburetor in petrol engines and with fuel injection in diesel engines. Most modern petrol engines now use fuel injection too - though the technology is quite different. While diesel must be injected at an exact point in that engine cycle, no such precision is needed in a petrol engine. However, the lack of lubricity in petrol means that the injectors themselves must be more sophisticated.
Carburetor
Simpler reciprocating engines continue to use a carburetor to supply fuel into the cylinder. Although carburetor technology in automobiles reached a very high degree of sophistication and precision, from the mid-1980s it lost out on cost and flexibility to fuel injection. Simple forms of carburetor remain in widespread use in small engines such as lawn mowers and more sophisticated forms are still used in small motorcycles.
Fuel injection
Larger gasoline engines used in automobiles have mostly moved to fuel injection systems (see Gasoline Direct Injection). Diesel engines have always used fuel injection because the timing of the injection initiates and controls the combustion.
Autogas (LPG) engines use either fuel injection systems or open- or closed-loop carburetors.
Fuel pump
Most internal combustion engines now require a fuel pump. Diesel engines use an all-mechanical precision pump system that delivers a timed injection direct into the combustion chamber, hence requiring a high delivery pressure to overcome the pressure of the combustion chamber. Petrol fuel injection delivers into the inlet tract at atmospheric pressure (or below) and timing is not involved, these pumps are normally driven electrically. Gas turbine and rocket engines use electrical systems.
Natural aspirated engines
When air is used with piston engines it can simply suck it in as the piston increases the volume of the chamber. However, this gives a maximum of 1 atmosphere of pressure difference across the inlet valves, and at high engine speeds the resulting airflow can limit potential power output.
Superchargers
A supercharger is a "forced induction" system which uses a compressor powered by the shaft of the engine which forces air through the valves of the engine to achieve higher flow. When these systems are employed the maximum absolute pressure at the inlet valve is typically around 2 times atmospheric pressure or more.
Turbochargers are another type of forced induction system which has its compressor powered by a gas turbine running off the exhaust gases from the engine.
Parts
For a four-stroke engine, key parts of the engine include the crankshaft (purple), connecting rod (orange), one or more camshafts (red and blue), and valves. For a two-stroke engine, there may simply be an exhaust outlet and fuel inlet instead of a valve system. In both types of engines there are one or more cylinders (grey and green), and for each cylinder there is a spark plug (darker-grey, gasoline engines only), a piston (yellow), and a crankpin (purple). A single sweep of the cylinder by the piston in an upward or downward motion is known as a stroke. The downward stroke that occurs directly after the air-fuel mix passes from the carburetor or fuel injector to the cylinder, where it is ignited. This is also known as a power stroke.
A Wankel engine has a triangular rotor that orbits in an epitrochoidal (figure 8 shape) chamber around an eccentric shaft. The four phases of operation (intake, compression, power, and exhaust) take place in what is effectively a moving, variable-volume chamber.
Valves
All four-stroke internal combustion engines employ valves to control the admittance of fuel and air into the combustion chamber. Two-stroke engines use ports in the cylinder bore, covered and uncovered by the piston, though there have been variations such as exhaust valves.
Exhaust systems
Internal combustion engines have to manage the exhaust of the cooled combustion gas from the engine. The exhaust system frequently contains devices to control pollution, both chemical and noise pollution. In addition, for cyclic combustion engines the exhaust system is frequently tuned to improve emptying of the combustion chamber.
Cooling systems
Combustion generates a great deal of heat, and some of this transfers to the walls of the engine. Failure will occur if the body of the engine is allowed to reach too high a temperature, either the engine will physically fail, or any lubricants used will degrade to the point that they no longer protect the engine.
Cooling systems usually employ air (air cooled) or liquid (usually water) cooling while some very hot engines using radiative cooling (especially some Rocket engines).
Piston
Main article: piston
A piston is a component of reciprocating engines. It is located in a cylinder and is made gas-tight by piston rings. Its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In two-stroke engines the piston also acts as a valve by covering and uncovering ports in the cylinder wall.
Crankshaft
Most reciprocating internal combustion engines end up turning a shaft. This means that the linear motion of a piston must be converted into rotation. This is typically achieved by a crankshaft.
Flywheels
The flywheel is a disk or wheel attached to the crank, forming an inertial mass that stores rotational energy. In engines with only a single cylinder the flywheel is essential to carry energy over from the power stroke into a subsequent compression stroke. Flywheels are present in most reciprocating engines to smooth out the power delivery over each rotation of the crank and in most automotive engines also mount a gear ring for a starter. The rotational inertia of the flywheel also allows a much slower minimum unloaded speed and also improves the smoothness at idle. The flywheel may also perform a part of the balancing of the system and so by itself be out of balance, although most engines will use a neutral balance for the flywheel, enabling it to be balanced in a separate operation. The flywheel is also used as a mounting for the clutch or a torque converter in most automotive applications.
Lubrication Systems
Internal combustions engines require lubrication in operation that moving parts slide smoothly over each other. Insufficient lubrication subjects the parts of the engine to metal-to-metal contact, friction, heat build-up, rapid wear often culminating in parts becoming friction welded together eg pistons in their cylinders. Big end bearings seizing up will sometimes lead to a connecting rod breaking and poking out through the crankcase.
Several different types of lubrication systems are used. Simple two-stroke engines are lubricated by oil mixed into the fuel or injected into the induction stream as a spray. Early slow-speed stationary and marine engines were lubricated by gravity from small chambers similar to those used on steam engines at the time—with an engine tender refilling these as needed. As engines were adapted for automotive and aircraft use, the need for a high power-to-weight ratio led to increased speeds, higher temperatures, and greater pressure on bearings which in turn required pressure-lubrication for crank bearings and connecting-rod journals. This was provided either by a direct lubrication from a pump。
Control systems
Most engines require one or more systems to start and shutdown the engine and to control parameters such as the power, speed, torque, pollution, combustion temperature, efficiency and to stabilise the engine from modes of operation that may induce self-damage such as pre-ignition. Such systems may be referred to as engine control units.
Many control systems today are digital, and are frequently termed FADEC (Full Authority Digital Electronic Control) systems.
Diagnostic systems
Engine On Board Diagnostics (also known as OBD) is a computerized system that allows for electronic diagnosis of a vehicles' powerplant. The first generation, known as OBD1, was introduced 10 years after the U.S. Congress passed the Clean Air Act in 1970 as a way to monitor a vehicles' fuel injection system. OBD2, the second generation of computerized on-board diagnostics, was codified and recommended by the California Air Resource Board in 1994 and became mandatory equipment aboard all vehicles sold in the United States as of 1996.
Measures of engine performance
Energy efficiency
Once ignited and burnt, the combustion products—hot gases—have more available thermal energy than the original compressed fuel-air mixture (which had higher chemical energy). The available energy is manifested as high temperature and pressure that can be translated into work by the engine. In a reciprocating engine, the high-pressure gases inside the cylinders drive the engine's pistons.
Once the available energy has been removed, the remaining hot gases are vented (often by opening a valve or exposing the exhaust outlet) and this allows the piston to return to its previous position (top dead center, or TDC). The piston can then proceed to the next phase of its cycle, which varies between engines. Any heat that isn't translated into work is normally considered a waste product and is removed from the engine either by an air or liquid cooling system.
Engine efficiency can be discussed in a number of ways but it usually involves a comparison of the total chemical energy in the fuels, and the useful energy extracted from the fuels in the form of kinetic energy. The most fundamental and abstract discussion of engine efficiency is the thermodynamic limit for extracting energy from the fuel defined by a thermodynamic cycle. The most comprehensive is the empirical fuel efficiency of the total engine system for accomplishing a desired task; for example, the miles per gallon accumulated.
Internal combustion engines are primarily heat engines and as such the phenomenon that limits their efficiency is described by thermodynamic cycles. None of these cycles exceed the limit defined by the Carnot cycle which states that the overall efficiency is dictated by the difference between the lower and upper operating temperatures of the engine. A terrestrial engine is usually and fundamentally limited by the upper thermal stability derived from the material used to make up the engine. All metals and alloys eventually melt or decompose and there is significant researching into ceramic materials that can be made with higher thermal stabilities and desirable structural properties. Higher thermal stability allows for greater temperature difference between the lower and upper operating temperatures—thus greater thermodynamic efficiency.
The thermodynamic limits assume that the engine is operating in ideal conditions. A frictionless world, ideal gases, perfect insulators, and operation at infinite time. The real world is substantially more complex and all the complexities reduce the efficiency. In addition, real engines run best at specific loads and rates as described by their power curve. For example, a car cruising on a highway is usually operating significantly below its ideal load, because the engine is designed for the higher loads desired for rapid acceleration. The applications of engines are used as contributed drag on the total system reducing overall efficiency, such as wind resistance designs for vehicles. These and many other losses result in an engines' real-world fuel economy that is usually measured in the units of miles per gallon (or fuel consumption in liters per 100 kilometers) for automobiles. The miles in miles per gallon represents a meaningful amount of work
Most steel engines have a thermodynamic limit of 37%. Even when aided with turbochargers and stock efficiency aids, most engines retain an average efficiency of about 18%-20%.[7][8] Rocket engine efficiencies are better still, up to 70%, because they combust at very high temperatures and pressures and are able to have very high expansion ratios.[9]
There are many inventions concerned with increasing the efficiency of IC engines. In general, practical engines are always compromised by trade-offs between different properties such as efficiency, weight, power, heat, response, exhaust emissions, or noise. Sometimes economy also plays a role in not only the cost of manufacturing the engine itself, but also manufacturing and distributing the fuel. Increasing the engines' efficiency brings better fuel economy but only if the fuel cost per energy content is the same.
Measures of fuel/propellant efficiency
For stationary and shaft engines including propeller engines, fuel consumption is measured by calculating the brake specific fuel consumption which measures the number of pounds of fuel that is needed to generate an hours' worth of horsepower-energy. In metric units, the number of grams of fuel needed to generate a kilowatt-hour of energy is calculated.
Air and noise pollution
Internal combustion engines such as reciprocating internal combustion engines produce air pollution emissions, due to incomplete combustion of carbonaceous fuel. The main derivatives of the process are carbon dioxide CO2, water and some soot—also called particulate matter (PM). The effects of inhaling particulate matter have been studied in humans and animals and include asthma, lung cancer, cardiovascular issues, and premature death. There are however some additional products of the combustion process that include nitrogen oxides and sulfur and some uncombusted hydrocarbons, depending on the operating conditions and the fuel-air ratio. |
|